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Summary
Several authors have worked on combining decline curve analysis (DCA) models and stochastic algorithms for probabilistic DCAs. 
However, there are no publications on the application of these probabilistic decline curve models to all the major shale basins in the 
United States. Also, several empirical and analytical decline curve models have been developed to fit historical production data better; 
there is no systematic investigation of the relevance of the efforts on new model development compared with the efforts to quantify the 
uncertainty associated with the “noise” in the historical data. This work compares the uncertainty associated with determining the best-fit 
model (epistemic uncertainty) with the uncertainty associated with the historical data (aleatoric uncertainty) and presents a procedure to 
find DCA-stochastic algorithm combinations that encompass the epistemic uncertainty.

We investigated two Bayesian methods—the approximate Bayesian computation and the Gibbs sampler—and two frequentist methods—
the conventional bootstrap (BS) and modified BS (MBS). These stochastic algorithms were combined with five empirical DCA models (Arps, 
Duong, power law, logistic growth, and stretched exponential decline) and the analytical Jacobi theta-2 model. We analyzed historical produc-
tion data from 1,800 wells (300 wells from each of the six major shale basins studied) with historical data lengths ranging from 12 to 60 months. 
We show the errors associated with the assumption of a uniform distribution for the model parameters and present an approach for integrating 
informative prior (IP) probabilistic distributions instead of the noninformative prior (NIP) or uniform prior distributions. Our results indicate 
the superior performance of the Bayesian methods, especially at short hindcasts (12–24 months of production history). We observed that the 
duration of the historical production data was the most critical factor. Using long hindcasts (up to 60 months) leveled the performance of all 
probabilistic methods regardless of the decline curve model or statistical methodology used. Additionally, we showed that it is possible to find 
DCA-stochastic model combinations that reflect the epistemic uncertainty in most of the shale basins investigated.

The novelty of this work lies in the development of IPs for the Bayesian methodologies and the development of a systematic approach 
to determine the combination of statistical methods and DCA models that encompasses the epistemic uncertainty. The proposed approach 
was implemented using open-source software packages to make our results reproducible and to facilitate its practical application in fore-
casting production in unconventional oil and gas reservoirs.

Introduction
Several models have been developed to forecast oil and gas production from unconventional oil and gas reservoirs. These include numer-
ical, analytical, and semianalytical methods that solve a system of partial differential equations, as well as several empirical methods that 
are fitted to historical production data. Numerical simulation methods are considered the most accurate and reliable forecasting methods 
(Makinde and Lee 2016) because of their ability to model the complex physics of flow in petroleum reservoirs. However, their application 
is typically time-consuming and computationally expensive, which curtail its application where time and computational resources are 
limited. Considering that unconventional oil and gas reservoirs are commercially developed with hundreds of multistage fractured hori-
zontal wells, most petroleum engineers resort to using analytical, empirical, semianalytical, and data-driven models to predict petroleum 
production performance efficiently.

Most analytical methods seek closed-form solutions to the partial differential equations that govern flow in porous media. A recent 
example of this approach is described in Holanda et al. (2018), where the authors present a physics-based model that accounts for the 
material balance and linear flow in hydraulically fractured horizontal wells. They used the second Jacobi theta function to simplify the 
infinite summation in the resulting analytical solution to the governing partial differential equation. The resulting model has three param-
eters and was shown to forecast production reliably. Hazlett et al. (2021) also developed an analytical model that captures the different 
flow regimes in a petroleum reservoir. This model was derived from Hazlett and Babu’s transient well pressure solution (Hazlett and Babu 
2014, 2018) for uniform pressure wells and the Farooq et al. (2020) single-fracture model. The model has four parameters that are not 
independent and together model the transition of flow in a reservoir. The model showed a good fit to production data but is yet to be tested 
on many wells. Hazlett et al. (2021) also opined that their model would be difficult to invert using a method like regression analysis 
because of the presence of multiple/nested exponentials in their solution.

Makinde and Lee (2016) presented a semianalytical technique that also utilized principal component methodology. Singular value decom-
position is used to calculate the production data’s principal components, and the results were used to forecast production. Although this model 
performed well with minimal production history (6 months), the prediction error increased with increasing production history.

The DCA approach started as an empirical method for forecasting production or petroleum reserves. The Arps model is the most used 
DCA method because of its relative simplicity (Arps 1945). The Arps equation assumes boundary-dominated flow (BDF), which is the 
most prevalent flow regime in conventional reservoirs. However, unconventional reservoirs (such as shales and tight sands) are typically 
used in transient linear flow during most of their production life. Depending on the distance between the fracture stages, this transient flow 
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typically transitions into the fracture-interference flow regime, where the pressure drops around each fracture stage begin to interfere with 
those from the neighboring fracture stages but rarely transition to the expected late-time BDF at the end of the well life. The expected long 
duration of the linear flow regime in these hydraulically fractured tight rocks makes the Arps model predictions overly optimistic because 
it was developed with the assumption of BDF (Lee and Sidle 2010). Therefore, several researchers have developed newer models to 
overcome the shortcomings of the Arps model.

These second-generation DCA models include the Duong model (Duong 2011), logistic growth analysis (LGA) model by Clark et al. 
(2011), stretched exponential production decline (SEPD) model by Valkó and Lee (2010), and power law exponential (PLE) model by Ilk 
et al. (2008). Hybrid models, which combine different DCA models, have also been developed to model production profiles from shale 
oil and gas reservoirs accurately. In these hybrid models, heuristic approaches help identify the dominant flow regimes and determine 
when to apply each model. For example, Okouma et al. (2012) used diagnostic plots from four different rate-time equations to obtain the 
DCA model parameters. They studied three shale plays and got different results with the log-log plot of rate vs. time. A clear linear flow 
trend with a negative half slope was observed in one of the shales. However, a BDF with a negative unit slope was observed in another 
shale play after 100 days of production. Khanal et al. (2015) showed that using a log-log diagnostic plot of rate vs. time to identify linear 
flow could lead to misleading results. They recommended using a log-log plot of pressure-normalized rate vs. time to identify linear and 
bilinear flow regimes and a log-log plot of pressure-normalized rate vs. material balance time to identify the BDF regime more accurately. 
They noted that there is no consensus on what model to use for the transition period, so they used models designed for linear flow.

Additionally, they proved that a combination of SEPD and Arps gave a more accurate production forecast than single models alone. 
Makinde and Lee (2016) used diagnostic plots to determine when to apply hybrid models. They used log-log plots of rate vs. time and rate 
vs. material balance time. Both plots (especially the latter) showed lengthy periods of transition flow, but contrary to Khanal et al. (2015), 
they modeled the transition flow with the Arps model. They concluded that hybrid DCA models performed better than standalone DCA 
models for forecasting production. Despite the advantages of the hybrid models, their limitation is that we typically do not know when to 
apply the different models that make up the hybrid model. Diagnostic plots offer some help but are left to subjective interpretation and 
induce a human bias in interpreting these plots. There is also the challenge of accurately modeling the transition flow periods that can 
occur for a long time because there are no known models to fit this flow regime adequately. These issues result in an increased vulnera-
bility to errors and uncertainties in the forecasts and underscore the need for uncertainty quantification in production forecasting.

Uncertainty can be defined as the range of possible values within which we can be reasonably certain that the true value of an estimated 
quantity lies. It can be characterized as epistemic or aleatoric (Der Kiureghian and Ditlevsen 2009). Aleatoric or statistical uncertainty 
results from randomness inherent in an observable process (Choi et al. 2020). Therefore, even with complete knowledge of the most 
appropriate model for the data-generating mechanism, there is still some uncertainty in the actual outcome of an event. Epistemic (or 
systemic) uncertainty arises from the lack of knowledge of the underlying model. So, the assumptions made during the development of a 
model are sources of epistemic uncertainties because they indicate a lack of knowledge about the phenomenon being modeled. Der 
Kiureghian and Ditlevsen (2009) noted the difficulty of classifying uncertainties as either aleatoric or epistemic and mentioned that such 
a classification is subjective and dependent on the context and application. In this work, we will compare the epistemic uncertainty (in 
production forecasting owing to the choice of the deterministic DCA models) with the aleatoric uncertainty (in production forecasting 
resulting from implementing probabilistic techniques with various DCA models). To this end, we introduce and discuss the probabilistic 
uncertainty quantification methods used in this study.

The frequentist and Bayesian methodologies are the main approaches for probabilistic uncertainty quantification in the petroleum 
engineering literature. Several authors have found that applying these methodologies can effectively quantify uncertainty in production 
forecast and reserves estimation. Jochen and Spivey (1996) applied the BS method with varying sample sizes to quantify production 
forecast uncertainty. They assumed that the production data were independent and identically distributed. Cheng et al. (2010) found this 
assumption improper for time-series data because the data structure contains correlations among data points. They proved that the BS 
method was unreliable for quantifying uncertainty in production forecast, and that the actual reservoir estimates lie outside the P90-P10 
80% confidence interval more than 20% of the time. So, they developed a modified version called the modified bootstrap (or MBS as 
denoted in this paper) method and applied it to the Arps model to address this limitation of the BS methodology. Their results proved that 
the MBS yielded a more accurate quantification of production forecast uncertainty with much wider confidence intervals and improved 
realized coverage rate (CR) of the confidence intervals. However, the CRs did not improve as more production data were available for 
history matching even though the confidence interval became narrower.

Okoli (2020) applied the BS and the MBS methodologies to three different DCA models—Arps, SEPD, and Duong—in three shale 
basins. They used different BS sample sizes, ranging from 10 to 10,000, and the CR and P50 error prediction did not improve significantly 
with varying BS sample sizes. However, their results for the application of different combinations of models in each shale basin indicated 
that the BS method outperformed the MBS method. They did not present the Duong model and the BS method results because they were 
unrealistic. A drawback of the frequentist probabilistic approach is that it does not take in any prior knowledge of the DCA model param-
eters—an issue that the Bayesian probabilistic approach solves.

Gong et al. (2014) applied the Bayesian probabilistic methodology to the Arps model using the Markov chain Monte Carlo (MCMC) 
sampling with the Metropolis-Hastings algorithm on 167 wells in the Barnett Shale. They assumed that the parameters of the Arps model 
were independent uniform distributions with constraints. The Markov chain’s initial parameters were obtained from parameter estimation 
after curve fitting the Arps model to the historical production data. They defined their proposed distribution for the Arps parameters using 
a set of standard deviations, which they believed provided good mixing for the MCMC sampler. They ran the Markov chain for 1,000 
iterations and used the values from the posterior distribution of the parameters to make a probabilistic production forecast. They showed 
that their approach was faster than the MBS method (Cheng et al. 2010) and performed better in nearly every aspect.

Gonzalez et al. (2012) expanded the approach presented in Gong et al. (2014) to different DCA models on 197 horizontal gas wells in the 
Barnett Shale. They performed the analysis using six hindcast sizes ranging from 6 to 36 months with a 6-month step. They defined each DCA 
model’s prior distribution using independent and uniform distributions. Their definitions of the likelihood and posterior distributions were the 
same as in Gong et al. (2014). They concluded that uncertainty and prediction errors were reduced with increasing hindcast size. However, the 
predictions were biased and unrealistic for specific models when using fewer than 12 months of hindcast size. Their work also showed that P50 
estimates using the Bayesian approach were more accurate than deterministic estimates at early times. Gonzalez et al. (2012) conducted two 
experiments where they compared the performance of the Metropolis-Hastings algorithm using informative and noninformative DCA LGA 
model parameters. One of the experiments used an informative carrying capacity, while the other used a uniform noninformative carrying 
capacity. They left the remaining LGA parameters’ prior distribution uniform in both cases. The IP distribution for the K parameter was 
obtained from other sources (Clark et al. 2011). Their result showed that the accuracy and calibration of probabilistic production forecasts were 
further enhanced when using IPs.
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Paryani et al. (2017) applied the approximate Bayesian computation (ABC) methodology to quantify the uncertainty associated with the 
Arps and LGA DCA models in production forecasting. Their methodology is more straightforward than the MCMC sampling with the 
Metropolis-Hastings algorithm because it does not require evaluating the likelihood function. They created a simulated data set with con-
strained uniform distribution for the prior distribution of the DCA model parameters. They used a distance measure (mean, standard deviation) 
between the simulated and the observed data for the likelihood function and the rejection sampling technique to set the threshold to accept or 
discard the simulated production data. Paryani et  al. (2017) concluded that the ABC methodology was computationally faster than the 
likelihood-based Bayesian methodology and provided more accurate results with the DCA models than the deterministic methods. Korde et al. 
(2021) expanded Paryani et al. (2017) and Gong et al. (2014) to other DCA models and implemented the Gibbs sampling algorithm as a differ-
ent Bayesian probabilistic methodology. Their work was based on more than 74 oil and gas wells in the Permian Basin. The prior distribution 
for the three Bayesian methods they studied was uninformative uniform distributions. They proved that the probabilistic models performed 
better in all aspects as more production history data became available. The CR for the Permian Basin was between 80 and 100%, but because 
of their use of NIPs, the interval between the P90 and P10 bounds was unsatisfactorily wide.

In this work, we develop an automated Bayesian workflow to address the shortcomings of applying the Bayesian methodology to 
production forecasting and uncertainty quantification. This work provides an objective and straightforward statistical approach of using 
several DCA models (one analytical and five empirical) to estimate reserves or production forecasts from given production rate-time data. 
To eliminate human bias, we automated the workflow in R (R Core Team 2020) and used “unbiased” IPs from a data set of more than 300 
shale wells per basin to improve the accuracy and uncertainty quantification of the Bayesian algorithms applied. We extend the application 
of the frequentist (BS and MBS) and Bayesian probability statistics (ABC and Gibbs sampling) to common DCA models for shale plays 
to evaluate their performance and trends. Additionally, we investigated the effect of the IP distribution of DCA model parameters on 
model performance. Finally, we compared aleatoric and epistemic uncertainties to recommend the DCA-stochastic algorithm pairs that 
encompass the epistemic uncertainty in the shale basins investigated.

Data Collection and Cleaning
This work leverages production data from several US shale oil and gas operating companies, which are reported in the software-as-a-
service provided by Enverus. The data include monthly oil production rates from multistage fractured horizontal wells in Texas, New 
York, Pennsylvania, North Dakota, Montana, Louisiana, and Wyoming. Although daily rates were unavailable, the monthly production 
data used have the advantage of being less noisy and making our production hindcast and forecast algorithms much faster than if daily 
rates are used. The Enverus data repository does not contain a temporal record of bottomhole pressure data. As such, it will be interesting 
to check (in future work) how the results of this analysis could change when pressure-normalized rate vs. time data is used instead of rate 
vs. time data. To test the robustness of the proposed probabilistic methodology, we used production data from various unconventional 
shale plays such as the Eagle Ford, Haynesville, Barnett, Marcellus, Bakken, and Permian basins. The steps to clean the data are outlined 
as follows:

1.	 We removed rows with one or more missing value(s).
2.	 We selected production data only from the desired shale basins.
3.	 We selected 300 wells from each of these shale basins based on the following criteria:

•	 At least 96 months of production data. This is to ensure that we have an adequate number of wells with a statistically significant 
number of data points in each well’s production history.

•	 We selected production wells with cumulative production values greater than 200 thousand bbl for oil wells and 1 MMscf for 
gas wells.

Considering that DCA was developed for wells with a natural production decline, we removed wells with sharp anomalous increases in 
production rates that are typically caused by shut-ins or refracturing. To achieve this, we only selected wells that meet all the following 
criteria:

1.	 The maximum production rate (qmax) must be within the first 10 months of production. This is indicated as the first annotation in 
Fig. 1, where qt1,…,qt10 represent the rates for the first 10 months, respectively.

2.	 The current production rate (qtn) must be less than twice the magnitude of the previous month’s production rate.
3.	 The absolute difference between two consecutive monthly production data points (qtn+1 and qtn) must be less than three folds of the 

standard deviation (sd) of the production rate data for that well. This rule is a modified application of the three-sigma rule.

Fig. 1—Graphical illustration of the criteria used to select wells with appropriate production decline.

Fig. 1 presents a rate-time plot that graphically illustrates these three criteria. Although several wells meet these criteria in each shale 
basin, we selected 300 wells (from each basin) to facilitate a reasonable comparison of the probabilistic analyses in this work.
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DCA Models and Parameter Ranges
We applied different popular DCA models to evaluate how well our approach performs on each one. To avoid the vulnerability to human 
bias typically associated with visual curve fitting, we automated the procedure of estimating the DCA model parameters using the 
Levenberg-Marquardt nonlinear least-squares algorithm in R (https://www.rdocumentation.org/packages/minpack.lm/versions/1.2-2). 
Table 1 outlines the DCA models used in this work and provides references for further details.

Name Type Information

Arps Empirical Arps (1945)

Duong Empirical Duong (2011)

LGA Empirical Clark et al. (2011)

SEPD Empirical Valkó and Lee (2010)

PLE Empirical Ilk et al. (2008)

Jacobi 2 theta Analytical Holanda et al. (2018)

Table 1—Summary of DCA models used in this work.

Table 2 presents a summary of the parameter bounds used in the regression algorithm to fit the DCA models to the historical produc-
tion rates. These bounds, as discussed in Gong et al. (2014), Korde et al. (2021), and Holanda et al. (2018), give sufficient room for the 
probabilistic methods to explore the probable solution space. As shown in Table 2, all the DCA models use three parameters except the 
PLE, which uses four parameters. The qi, b, Di parameters in the Arps and Duong models represent the initial flow rate, decline exponent, 
and initial decline rate, respectively, whereas qi, a, and m represent the initial rate coefficient, model coefficient, and time exponent in the 
Duong model. The parameters K, n, and a represent the carrying capacity, time exponent, and model coefficient in the LGA model, while 
qi, η, and ‍� ‍ represent the initial rate coefficient, time exponent, and time coefficient in the SEPD model. In the Jacobi theta 2 model, qi, η, 
and X represent the virtual initial rate, reciprocal characteristic time, and geometric factor, respectively. Finally, qi, Di, D∞, and n represent 
the initial rate coefficient, decline coefficient, terminal decline coefficient, and time exponent in the PLE model.

DCA Model Parameter Lower Limit Upper Limit

Arps qi 1 1,000,000

b 0 2

Di 0.1 50

Duong qi 0.01 1,000,000

a 0.5 5

m 0.5 5

LGA K 1,000 20,000,000

n 0.01 5

a 1 1,000

SEPD qi 1 1,000,000

η 0.01 5

‍� ‍ 1 100

Jacobi theta 
2

qi 1 1,000,000

η 0.001 5

X 0.001 10

PLE qi 1 1,000,000

Di 0.001 10

D∞ 1×10−9 1

n 0.001 5

Table 2—DCA model parameter bounds.

Bayesian Methodology
We applied the Bayesian approach to probabilistic production DCA using the Gibbs sampler (Korde et al. 2021) and the ABC algorithm 
(Paryani et al. 2017; Korde et al. 2021). The critical difference between these two algorithms is that the Gibbs sampler evaluates the like-
lihood, whereas the ABC algorithm simulates new data from the likelihood using the procedure described in Korde et al. (2021). The 
Bayesian methodology is based on the prior, likelihood, and posterior probability distributions. The following two subsections discuss the 
ABC and Gibbs algorithms, respectively.

Approximate Bayesian Computation (ABC). In Paryani et al. (2017) and Korde et al. (2021), the DCA model parameters were assumed 
to have a uniform prior distribution. This assumption is not necessarily representative of an analyst’s beliefs, so we generated an IP 
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distribution for each Arps decline model parameter using a subset of the production data set. The results summarized in Fig. 2 show that 
the distribution of the Arps model parameters is significantly different from a uniform distribution. The approach we used to estimate the 
prior distributions of the DCA model parameters helps avoid introducing errors into the production forecasting workflow. Additionally, 
we found that the proposed approach is not limited to the Arps DCA model but applies to all the other DCA model parameters. Our 
proposed method to generate representative and IP DCA model parameter distributions is summarized as follows:

1.	 Estimate the model parameters by fitting each DCA model to production data from one-third of the wells (100 wells out of the 300-
well data set) in each basin using regression.

2.	 Use a kernel density estimator function in R to smooth the histogram of each DCA parameter and create a linear interpolation func-
tion. This is shown as the blue lines in Figs. 2a through 2c. We cannot use this density function directly in the workflow because 
it is not parameterized. To be able to parameterize it, we proceed to Step 3.

3.	 Generate parameter draws that are uniformly distributed within each parameter bound. The parameter bounds are set as in Table 2. 
The uniform distribution is shown as the horizontal black line in Figs. 2d through 2f.

4.	 Sample from the uniform parameter draws using the smoothed histogram developed in Step 2 as the probability of occurrence to 
estimate the desired prior probability distributions. This is a score transform—transforming the samples from the uniform distribu-
tion to the target distribution; the target distribution is the kernel density in Step 2.

5.	 The estimated distributions yield a better representation of the accurate model parameter distributions, as represented by the red line 
plots in Figs. 2d through 2f. These probability distributions are parameterized and are fed into the Bayesian algorithm as the prior 
distributions for the corresponding model parameters.

Fig. 2—Illustration of the process for estimating IPs for Bayesian analysis.

It is worth mentioning that the 100-well subset used to develop the IPs in each shale basin was neither used for production forecasting 
nor for evaluating the ABC algorithm’s performance. We did this to avoid misleading or biased conclusions on the algorithm’s perfor-
mance because these 100 wells were used to estimate the prior probability distribution. Fig. 3 illustrates how we apply the ABC algorithm 
in probabilistic DCA as in Paryani et al. (2017) and Korde et al. (2021). The summary statistics used to compare the simulated data to the 
actual data include the mean, median, absolute deviation, and standard deviation. Simulated data sets that are not within the set threshold 
limits were rejected. The maximum threshold value used is 0.01, meaning that only a 1% difference in the summary statistics is accept-
able. In this work, we leveraged the “abc” package (Csilléry et al. 2010) in the R statistical programming language to facilitate the imple-
mentation of the ABC algorithm for DCA.

Gibbs Sampler. We refer the reader to Korde et al. (2021) for details regarding the Gibbs sampler and its implementation in petroleum 
production forecasting. Here, we present a new procedure to generate IP probability distributions for the Gibbs sampler as follows:

•	 Estimate model parameters by fitting each DCA model to one-third of the well production data in each basin using nonlinear 
regression.

•	 Collect summary statistics (mean, precision, and skewness) by following a procedure similar to the one outlined for computing IPs 
in the ABC section (Fig. 2).
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We implemented the MCMC Gibbs sampler method using the OpenBUGS open-source software. We used 10,000 iterations and dis-
carded the first 2,000 as a burn-in set. Fig. 4 summarizes the entire process of running the Gibbs sampler.

Fig. 4—Flow chart for the Bayesian MCMC method using the Gibbs sampler. PI = prediction interval.

Frequentist Methodology—Conventional BS and MBS
The overall workflow for the conventional BS methodology using an arbitrary model is illustrated below (as discussed more exhaustively 
in Okoli 2020):

1.	 Set aside an initial fraction of the data set as the hindcast and reserve the remainder of the data set to estimate the misfit between 
predicted (forecast) and actual production.

2.	 From the initial hindcast production data set, generate multiple BS samples by randomly sampling with replacement. Each BS 
sample has the same size as the hindcast.

3.	 Estimate the parameters in the decline curve model by fitting the selected DCA model to the bootstrapped data using regression 
analysis.

4.	 Using the estimated parameters and the DCA model, forecast production performance.
5.	 Repeat Steps 1–4, iterating through all the BS samples.
6.	 Summarize the overall distribution of productivity/cumulation production by computing the distributions’ 10th, 50th, and 90th 

percentiles.
In the conventional BS method, the production data are considered independent and identically distributed even though it is a sequence 

of time-dependent observations with a trend (thus not independent and identically distributed). To address this limitation, Cheng et al. 
(2010) introduced the “MBS method with block resampling.” The overall workflow for the MBS methodology with an arbitrary model is 
described as follows (Okoli 2020):

1.	 Set aside a fraction of the data set as the hindcast and reserve the remainder of the data set to estimate the misfit between predicted 
(forecast) and actual production.

2.	 Fit the initial hindcast data set with a decline curve model and compute the residuals between the fitted model and observed data.
3.	 Determine the optimal block size by applying an autocorrelation function (Cheng et al. 2010; Okoli 2020) to the residuals. Next, 

group the residuals into time intervals based on the optimal block size.
4.	 Generate multiple block BS samples of the residuals by randomly sampling the blocks with replacement. Each complete BS sample 

has the same size as the original hindcast.

Fig. 3—Flow chart for ABC technique. PI = prediction interval.
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5.	 Add the block BS samples of the residuals to the production fitted values to obtain BS production data.
6.	 Compute the parameters in the decline curve model by fitting the selected DCA model to the BS sample data using regression 

analysis.
7.	 Using the fitted model, forecast production performance.
8.	 Repeat Steps 4–7 until all the BS samples.
9.	 Summarize the overall distribution of productivity/cumulation production by computing the distributions’ 10th, 50th, and 90th 

percentiles.
We refer our readers to the summary of Jochen and Spivey (1996), Cheng et al. (2010), and Okoli (2020) in the Introduction section 

of this paper for further details regarding the conventional BS and MBS methods. In this work, we implemented the conventional BS and 
MBS methods as presented in Okoli (2020).

Uncertainty
Uncertainty can be defined as a lack of knowledge about the outcome of a random event or about the actual state of a phenomenon 
(Hubbard 2014). In petroleum production forecasting, sources of uncertainty can include (but are not limited to) the following (Begg et al. 
2014 and Der Kiureghian and Ditlevsen 2009):

•	 Measurement of empirical quantities (production rate).
•	 Procedures and assumptions adopted in developing the models (physical or probabilistic).
•	 Statistical uncertainty resulting from the estimation of model parameters.
Therefore, uncertainty can arise from multiple sources; distinguishing between its sources and their relative contributions facilitates 

decision-making to obtain meaningful results. Uncertainty can be coarsely classified either as “epistemic” or “aleatoric.” Aleatoric is 
derived from the Latin word alea, which is associated with randomness, while epistemic is derived from the Greek word episteme, which 
is related to the lack of data (Der Kiureghian and Ditlevsen 2009). Unfortunately, there is no consensus among engineers and statisticians 
on the correct partitioning of uncertainty into its aleatoric and epistemic components (Faber 2005; Vrouwenvelder 2003; Lindley 2000; 
Paté-Cornell 1996). So, the following two subsections describe how we attribute uncertainty to these two classes of uncertainty in this 
work.

Epistemic Uncertainty. We define epistemic uncertainty as the uncertainty introduced because of the lack of a priori knowledge of which 
the available deterministic DCA models will produce the best forecast. Our estimate of the epistemic uncertainty for each shale basin is 
the range between minimum and maximum deterministic forecasts derived from applying all the DCA models, as illustrated graphically 
in Fig. 5.

Fig. 5—Epistemic uncertainty.

Aleatoric Uncertainty. In this work, the aleatoric uncertainty is the uncertainty introduced because of the randomness in the production 
data as modeled with the combination of a particular algorithm and a given DCA model. This uncertainty is represented by the P10–P90 
interval, as illustrated in Fig. 6.

Fig. 6—Aleatoric uncertainty.

A critical insight we can provide in this work is whether a specific DCA model-stochastic algorithm pair (aleatoric uncertainty) encom-
passes the epistemic uncertainty described above. In situations where such pairs exist, the engineer would not have to always find the 
model that best matches the available data (as this objective can be a moving target). As opposed to finding the model with the best fit to 
the historical production data, the engineer would rather aim to find the best DCA model-stochastic algorithm pair that encompasses 
epistemic uncertainty.
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Well and Basin Characteristics
This section summarizes the characteristics/properties of the wells from the six shale basins studied. To give a visual indication of the 
location of all the wells in each basin relative to each other, we provide spatial plots of the location of the 300 wells in each shale play.

Well Characteristics. The completion information for the wells studied includes the fluid treatment type, treatment concentration, well 
location, and measured depth (MD). The range of variables considered for the well completion sensitivity analysis is shown in Tables 3 
and 4. In Table 3, the treatment concentration, which is the concentration of solids in the hydraulic fracturing (or treatment) fluid in 
pounds of proppant per gallon of clean fluid, is treated as a categorical variable or value. This means that instead of using the real number 
values of the treatment concentration, we bin it into a maximum of five classes, with each class having the ranges shown in the second 
column of the table. The MDs in Table 4 are also treated as categorical variables. We split the geolocation of the wells into four quadrants 
using the extreme data points as the quadrilateral perimeter bounds, as shown in Fig. 7.

Treatment Concentration Value

Conc-1 0–0.5 ppg

Conc-2 0.5–1 ppg

Conc-3 1–1.5 ppg

Conc-4 1.5–2 ppg

Conc-5 >2 ppg

Table 3—Categorical values for the 
concentration ranges analyzed.

Name MD

Depth-1 0–4,999 ft

Depth-2 5,000–9,999 ft

Depth-3 10,000–14,999 ft

Depth-4 15,000–20,000 ft

Depth-5 >20,000 ft

Table 4—Categorical values 
for the well MD ranges 
analyzed.

Fig. 7—Clustering of well locations.

Basin Characteristics. Fig. 8 presents the bottomhole location of the 300 multistage fractured horizontal wells in the Bakken, Barnett, 
Eagle Ford, Haynesville, Marcellus, and Permian basins. It shows that the wells are more clustered together in some basins (like the Eagle 
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Ford) than others. Although Table 5 only summarizes the characteristics of the wells in the Bakken Shale, Tables S-1 through S-5 in the 
Supplementary Materials provided with this paper summarize the characteristics of the other shale plays studied.

Characteristics Values Count

Well size 300  �

Production type Oil 49

Oil and gas 251

State North Dakota (ND), Montana (MT)  �

Basin Williston  �

Mean/standard deviation oil gravity (°API) 41.6/2.36 215

Producing reservoir Middle Bakken (Bakken Pool), Middle Bakken/Three Forks, 
Three Forks, Bakken Pool, Middle Bakken (Sanish Pool), 

Upper Bakken, Bakken

 �

Treatment type Linear gel, slickwater, crosslink, hybrid  �

Mean/standard deviation proppant (lbs) 2,388,551/1,157,840 277

Mean/standard deviation treatment fluid 
(bbl)

41,977.09/25,065.89 271

Mean/standard deviation MD (ft) 18,842/2,531 297

Table 5—Well characteristics for the Bakken Shale.

Discussion of Results
This section discusses the metrics we used to quantify the performance of the different probabilistic approaches used in this work. Next, 
we considered model and algorithmic performance as a function of hindcast length, using results from the Bakken Shale as a point of 
reference. We also discussed the effect of IPs and specific completion properties on probabilistic model/algorithmic performance. Last, 
we compared aleatoric and epistemic uncertainty.

Evaluation Metrics. We evaluated the performance of each probabilistic model forecast using the mean absolute prediction error 
(MAPE), CR, and relative error (RE). The MAPE is the mean absolute difference between the P50 prediction (or the deterministic 
prediction for epistemic uncertainty) and the actual data. It indicates the degree of offset of our forecast from the real data. The CR tells 
us what percentage of the probabilistic forecast bounds for each shale envelops the actual production, and hence, the reliability of our 
forecast. Since we are working with an 80% prediction interval (P90–P10), the ideal CR will be approximately 80%. Finally, the RE 

Fig. 8—This figure presents the bottomhole well locations in the Bakken, Barnett, Eagle Ford, Haynesville, Marcellus, and Permian 
basins, respectively (a–f). The two distances provided above each subfigure correspond to the longitudinal and latitudinal 
distances, respectively.
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metric indicates where the error leans relative to the actual production. It can either be below (underpredictive) or above (overpredictive) 
the actual production. Table 6 summarizes the description and equation for the MAPE, CR, and RE metrics.

Metric Description Equation

MAPE/prediction error This is the mean absolute difference between the P50 
prediction and actual data.

‍

PN
1

abs
�
P50�Pactual

�
Pactual
N ‍

CR It is computed as a function of the indicator function, I().
‍

PN
1 I

�
P90<Pactual<P10

�
N ‍

RE It indicates where the error leans relative to the actual 
production.

‍

PN
1

�
P50�Pactual

�
Pactual
N ‍

Table 6—Metrics for evaluating algorithm and model performance.

Sample and Iteration Size. Fig. 9 shows the sensitivity analysis result for the various probabilistic methods using varying sample sizes. 
There was no notable change in the prediction error for the BS and MBS approaches, so we used a BS sample size of 500 to ensure 
sufficient sampling while considering the computational time. We did not run the Gibbs sampler for iterations less than 10,000 because we 
observed from previous work (Korde et al. 2021) that convergence for this application is usually guaranteed when the number of iterations 
is at least 10,000 for the Gibbs sampler. The ABC algorithm showed the lowest error with 1,000 iterations, and the error remained 
unchanged above 5,000 iterations. We used 10,000 iterations to ensure enough iterations comparable with the Gibbs approach. Table 7 
shows the sample size used for the various probabilistic methods.

Fig. 9—Evaluation metric variation for the different probabilistic approaches.

Probabilistic Algorithms BS Sample Size for Frequentist Methods/Iteration Size for Bayesian Methods

ABC 10,000

Gibbs 10,000

BS 500

MBS 500

Table 7—Sample/iteration size used for the various probabilistic techniques.

There was no significant difference in the results from each shale basin, so we presented only the analysis results for the Bakken Shale 
play. Additionally, we do not include the Duong model and the BS results in these figures because they showed exceptionally large pre-
diction errors. We will investigate this further in future work. For completeness, the analyses of the other shale basins are presented in 
Figs. S-1 through S-34 and Tables S-6 through S-15 of the Supplementary Materials.

Model Performance. Fig. 10 presents plots of the prediction error, RE, and CR for the ABC, BS, Gibbs, and MBS algorithms against the 
six DCA models used in this work. The four-line plots in each subfigure correspond to the ABC, BS, Gibbs, and MBS algorithms. The 
three rows of this figure correspond to the results obtained using only the first 12, 36, and 60 months of observed production data. These 
results were obtained from the Bakken Shale Basin and indicated the following:

•	 Specific DCA models perform better than others, especially at shorter hindcast lengths (12 months). In general, the Arps and the 
Duong models result in better prediction errors than the other DCA models at a hindcast of 12 months. At a hindcast of 36 months, 
the Arps, Duong, LGA, and SEPD models better fit the production data, as seen in the prediction errors. At 60 months, the perfor-
mance disparity between the most DCA models becomes less significant.

•	 The empirical DCA models were the best performing models. They vastly outperformed the analytical Jacobi model except for the 
PLE model.

•	 The prediction error reduces with increasing hindcast length for each DCA model while the RE trends toward neutrality (0%).
•	 The CR gets better as more historical production data become available, implying that the DCA model predictions become better 

calibrated with increasing hindcast lengths.
•	 The PLE model performed the worst across all hindcast lengths for each evaluation metric.
•	 Specific DCA models, such as the PLE and Jacobi, are significantly pessimistic. In contrast, others are either pessimistic or opti-

mistic, depending on the combination of the probabilistic algorithm and the DCA model.
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Although these observations are illustrated using the results from the analysis of the Bakken Shale, comparable results were observed 
for the other six shale basins, as shown in Figs. S-1 through S-34 and Tables S-6 through S-15 of the Supplementary Materials provided 
with this paper.

Algorithm Performance. Fig. 11 presents the prediction error, RE, and CR for the six DCA models plotted against the ABC, BS, Gibbs, 
and MBS algorithms. As in Fig. 10, the three rows of this figure correspond to the results obtained using the first 12, 36, and 60 months of 
observed production data only. Although the same data are used to generate Figs. 10 and 11, the former plots the probabilistic algorithms 
as line plots against the DCA models on the x-axis, while the latter plots the DCA models as line plots against the probabilistic algorithms 
on the x-axis. The results presented in Fig. 11 indicate that:

•	 The Bayesian algorithms (ABC or Gibbs or both) perform best in terms of the prediction error at short hindcast lengths (12 months 
hindcast).

•	 As the hindcast length increases, the difference between the algorithm performance reduces. At longer hindcast lengths, all the 
algorithms show similar prediction errors, except algorithms associated with the Duong model.

•	 The prediction error reduces with increasing hindcast length for each algorithm, while RE trends toward neutrality (0%).
•	 The CR generally increases as more historical production data are available.
Table 8 presents the model-algorithm combination with the lowest prediction error. It shows that the Bayesian algorithms outperform 

the frequentist algorithm in terms of prediction error. In contrast, Table 9 shows that the frequentist algorithms outperform the Bayesian 
algorithms in terms of the CR. We used a prediction interval of 80% for our probabilistic forecast; therefore, a CR of approximately 80% 
is desirable.

Effect of IPs. Fig. 12 presents the MAPE and CR for the ABC and Gibbs algorithms with and without IP probabilistic distributions. 
The suffixes IP and NIP after the ABC and Gibbs algorithms (in the legend) represent the informative prior and noninformative prior 
probabilistic distributions. The figure shows that using IPs in the ABC and Gibbs algorithms results in a significant improvement in 
the performance of these algorithms compared with NIP (or uniform) distributions. The top plot in Fig. 12 shows a significant (~50%) 
reduction in the prediction error when IPs are used. This result shows how sensitive the Bayesian methodology is to the prior distributional 

Fig. 10—Effect plot of algorithm performance with different DCA models at selected hindcast sizes for the Bakken Shale.
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assumptions, which may be one of the reasons the Bayesian algorithms outperform their frequentist counterparts in this work. The bottom 
plot in this figure shows an improvement in the CR when IPs are used instead of NIPs.

Hindcast (months) Pair CR (%)
Prediction Error 

(%)

12 ABC-LGA 79 19.02

36 BS-Arps 79 9

60 MBS-LGA 80 5.46

Table 9—Best performing model combination based on the 
CR in the Bakken basin.

Fig. 11—Effect plot of DCA performance with different algorithms at selected hindcast size for the Bakken Shale.

Hindcast (months) Pair
Prediction Error 

(%) CR (%)

12 Gibbs-Arps 14.22 94

36 ABC-LGA/Arps-Gibbs 6.93/~7 93

60 ABC-LGA 3.40 99

Table 8—Best performing model combination based on the prediction 
error in the Bakken Basin.
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Fig. 13 presents the MAPE and CR for each DCA model and stochastic algorithm combination. The results confirm the reduction in 
MAPE for virtually all pairs of DCA models and stochastic algorithms, but the effect of IPs is more significant in specific DCA models 
than others. The prediction error for the Jacobi-Gibbs pair with NIP was so high that we excluded it from the plot. Additionally, we 
observe that the CR is generally higher under IPs for all combinations of DCA models and stochastic algorithms, except the Jacobi-ABC 
combination. Although Figs. 12 and 13 present the results for the Bakken Shale, Figs. S-6, S-7, S-13, S-14, S-20, S-21, S-27, and S-28 
in the Supplementary Materials show the corresponding results for other shale basins. These results indicate the importance of computing 
and using IP distributions in probabilistic DCA for unconventional reservoirs.

Fig. 13—Effect of IPs on DCA models with Bayesian algorithms (ABC and Gibbs) for the Bakken Shale at 12 months hindcast.

Performance Correlation with Well Completion Properties. Fig. 14 presents the performance of the four probabilistic algorithms 
when different fluid treatment types (Fig. 14a), treatment concentrations (Fig. 14b), well MDs (Fig. 14c), and well locations (Fig. 14d) 
are considered. The plots presented in Fig. 14a show that the MAPE and CR are consistent across all fluid treatment types regardless of 
the algorithm used and the imbalance in the data, as indicated by the well count for each fluid treatment type. A similar consistency is 
observed in the performance of the probabilistic algorithms when different treatment concentrations, well depths, and well locations are 
considered in Figs. 14b through 14d, respectively. We also observe from Fig. 14 that the CR centers around 0.8 for the ABC algorithm, 
which is the 80% prediction interval adopted in our probability bounds. The Gibbs algorithm shows a nearly 100% CR, whereas those of 
the BS and MBS are lower than the 80% prediction interval.

Fig. 12—Performance of Bayesian algorithms (ABC and Gibbs) with IPs and NIPs for the Bakken Shale. This plot is an aggregate 
of all DCA models.
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Epistemic DCA Model Uncertainty vs. Aleatoric Algorithm Uncertainty
Fig. 15 presents box plots showing the range of aleatoric and epistemic uncertainties associated with the four probabilistic algorithms. 
The plots shown in Figs. 15a through 15d were obtained using a 36-month hindcast on the production data from 200 Bakken Shale wells. 
The first six boxes in each of the four plots depict the variability among the forecasted cumulative production from the 200 wells, thus 
conveying the aleatoric uncertainty associated with each of the six DCA models displayed on the x-axis. The last box represents epistemic 
uncertainty and is shown as “EPIS” on the x-axis. The forecast production volumes indicated on the y-axis in this figure were presented 
in barrels, while the blue, orange, and red dots in each box plot represent the P10, P50, and P90 cumulative production forecasts on a per 
well basis. Although the aleatoric uncertainties associated with the DCA models vary from plots (a) through (d) in Fig. 15, the epistemic 
uncertainty shown is identical in all four plots. The epistemic uncertainty is independent of probabilistic algorithms and added here solely 
for easy comparison. This is because the epistemic uncertainty is computed from the aggregation of all six DCA models. For each DCA 
model, we calculated the average cumulative production from the 200-well data set. This resulted in a single average cumulative produc-
tion statistic per DCA model per basin. The epistemic uncertainty is calculated from concatenating the cumulative production statistic 
from all six DCA models and presenting them in a box plot format.

Given the background in the previous paragraph, we propose the following thought experiment. Suppose an engineer wants to predict 
the cumulative production from a given well in the Bakken Shale. The engineer wishes to know if there exists a DCA-stochastic algorithm 
combination whose aleatoric uncertainty encompasses the epistemic uncertainty associated with cumulative production forecasts for this 
well. If such a combination exists, the engineer does not need to apply six different DCA algorithms to the production data to obtain a 
priori knowledge of the forecast uncertainty. Fig. 15 provides results that can be analyzed to determine if this DCA-stochastic algorithm 
combination exists.

We start this analysis of Fig. 15 by noting that the last box plot in each quadrant represents epistemic uncertainty. Therefore, from 
Figs. 15a through 15d, we need to find which one of the DCA-stochastic algorithm combinations encompasses epistemic uncertainty. 
This is achieved by simply comparing the range of the DCA-stochastic algorithm box plot with that of the epistemic uncertainty and 
selecting the one(s) where the range of the epistemic uncertainty lies within that of the DCA-stochastic algorithm combination. If multiple 
DCA-stochastic algorithm box plots encompass the epistemic uncertainty box plot, we choose the one that is closest to the range of the 
epistemic uncertainty (i.e., the one with the tightest bounds). In Fig. 15a, none of the DCA-stochastic algorithm combinations (aleatoric 
uncertainty) encompasses epistemic uncertainty, while in Fig. 15b, most of the DCA-stochastic algorithm combinations encompass epis-
temic uncertainty. Based on the criteria for choosing the combination with the tightest bounds, in this case, the Arps-Gibbs combination 
is considered the best choice in Fig. 15b. Using this reasoning for Figs. 15a through 15d suggests that the DCA-stochastic algorithm 
combinations that most tightly encompass the epistemic uncertainty in the Bakken are the Arps-Gibbs, Jacobi-BS, and the Arps-ABC 
combinations. Comparing the uncertainty ranges of these three DCA-stochastic algorithm combinations, the Jacobi-BS fits the epistemic 
uncertainty most tightly. Therefore, for an engineer working on forecasting the production performance of Bakken Shale oil wells, our 
recommended DCA-stochastic algorithm combination that encompasses epistemic uncertainty would be the Jacobi-BS.

The above reasoning is repeated for the other shale basins investigated, and the results are summarized in Table 10 (also see Figs. S-3, 
S-12, S-19, S-26, and S-33 in the Supplementary Material provided). Despite the preceding, the answer to the question of whether an 
engineer should focus on the determination of the “best” model out of the plethora of available DCA models (reflecting the epistemic 
uncertainty) or should spend more time and effort on quantifying the aleatoric uncertainty will still depend on the philosophical bent and 
inclination of the engineer. Engineers who favor the “best model” approach do not need to change their current workflow. However, for 
engineers whose philosophical bent subscribes to Voltaire’s perfection-being-the-enemy-of-good aphorism and who wish to quantify the 
aleatoric uncertainty while still respecting the epistemic uncertainty range, we believe Table 10 offers valuable guidance.

Fig. 14—Algorithm performance across various operational and reservoir location properties for the Bakken Shale. This plot 
aggregates all DCA model performances captured at a 36-month hindcast.

D
ow

nloaded from
 http://onepetro.org/R

EE/article-pdf/doi/10.2118/212837-PA/3048406/spe-212837-pa.pdf/1 by Louisiana State U
niversity user on 21 February 2023



2022 SPE Reservoir Evaluation & Engineering 15

Shale Model Combination

Bakken oil Arps-Gibbs/Jacobi-BS/Arps-ABC

Barnett gas Jacobi-BS

Eagle Ford oil SEPD-Gibbs

Haynesville gas SEPD-ABC/Jacobi-MBS

Marcellus gas Jacobi-BS/Jacobi-ABC/LGA-Gibbs

Permian oil SEPD-ABC

Table 10—Aleatoric uncertainty model combinations 
that encompass epistemic uncertainty on a shale-by-
shale basis for a 36-month hindcast.

Conclusions
Based on the results presented in this work, we conclude the following:
•	 The Arps and Duong models generally yield lower prediction errors than the other DCA models at a hindcast of 12 months for most of 

the stochastic algorithms studied. At a hindcast of 36 months, the Arps, Duong, LGA, and SEPD models better fit the production data 
as indicated by the prediction errors. At 60 months, the performance disparity between most DCA models becomes less significant.

•	 The empirical DCA models were the best performing models. They vastly outperformed the analytical Jacobi model except for the 
PLE model. We also observed that the PLE and Jacobi models are consistently and significantly pessimistic. In contrast, the others are 
either pessimistic or optimistic, depending on the probabilistic algorithm and the DCA model.

•	 As expected, the prediction error reduces with increasing hindcast length for each DCA model, the RE trends toward neutrality (0%), 
and the CR improves as more historical production data become available. This implies that the DCA model predictions become more 
reliable with increasing hindcast lengths, as expected.

•	 The Bayesian algorithms (ABC or GIBBS or both) outperform the others in terms of the prediction error at short hindcast lengths 
(12-month hindcast). As the hindcast length increases, the difference in predictive performance between the algorithms reduces. At 
longer hindcast lengths, all the algorithms show a similar level of prediction errors, with the significant exception of the algorithms 
associated with the PLE model.

•	 We found that the use of IPs significantly influences the performance of the Bayesian algorithms when compared with NIPs (uniform 
distribution). The amount of production history available is the common deciding factor in the model and algorithm predictive 

Fig. 15—A comparison of aleatoric and epistemic uncertainty in the Bakken shale play. The aleatoric quantification method in (a) is 
MBS, in (b) is Gibbs, in (c) is BS, and in (d) is ABC. Forecast volumes are in barrels.
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performance. When there are sufficient production data (defined as between three-eighths and five-eighths of the complete production 
history), less concern needs to be paid to the choice of model or algorithm.

•	 Varying completion properties did not influence the predictive performance of the probabilistic algorithms investigated in this work.
•	 We found that there exists a DCA-stochastic algorithm combination (aleatoric uncertainty) that encompasses the estimated epistemic 

uncertainty for most of the shale basins investigated. Interested engineers can use this suggested combination to represent the epistemic 
uncertainty associated with the corresponding shale basin forecasts.

Nomenclature
All symbols used in the paper are defined clearly with dimensions and units (as applicable) at first mention in the text.
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