
Journal of Petroleum Science and Engineering 211 (2022) 110175

Available online 15 January 2022
0920-4105/© 2022 Elsevier B.V. All rights reserved.

Application of physics informed neural networks to
compositional modeling

Thelma Anizia Ihunde, Olufemi Olorode *

Louisiana State University, USA

A R T I C L E I N F O

Keywords:
Physics-informed neural network
Compositional modeling
Artificial intelligence
Phase equilibrium calculations
Physics-constrained deep learning

A B S T R A C T

Compositional modeling is essential when simulating any process that involves significant changes in the
composition of reservoir fluids. This includes modeling the flow of multicomponent hydrocarbons in pipes,
surface facilities, and subsurface rocks. However, the rigorous thermodynamics approach to obtain phase
composition is computationally expensive. So, various researchers have considered using machine learning
models trained with rigorous phase-equilibrium (flash) calculations to improve computational speed.

Unlike previous publications that apply classical deep learning (DL) models to flash calculations, this work will
demonstrate the first attempt to incorporate thermodynamics constraints into the training of these models to
ensure that they honor physical laws. To this end, we generated one million different compositions with a space-
filling mixture design and performed two-phase flash to obtain the corresponding phase compositions. We
performed seven-fold cross-validation to ensure reliable estimates of model accuracy. We compared the physics-
constrained and standard DL model results to quantify the ability of our approach to honor physical constraints.

The evaluation of our physics-informed neural network (PINN) model compared to a standard DL model shows
that we can incorporate physical constraints without a considerable reduction in model accuracy. Based on the
test data, our model evaluation results indicate that both PINN and standard DL models achieve coefficients of
determination of 97%. In contrast, the root-mean-square error of the physics-constraint errors in the PINN model
is at least two times smaller than in the standard DL model. To further demonstrate that our PINN model out-
performs the DL model in terms of honoring physical constraints, we generate phase envelopes using the overall
compositions predicted using the PINN and DL models for several fluid mixtures in the test data. These results
show the importance of incorporating the thermodynamic constraints into DL models.

1. Introduction

Compositional modeling involves stability analysis, where the sta-
bility of a fluid mixture in a single-phase state is determined at a given
pressure and temperature. Next, phase equilibrium calculations (also
known as flash) are performed to determine the mole fractions of the
fluid components in the liquid and vapor phases (for two-phase flash).
These calculations are needed in every representative elementary vol-
ume (REV) and time step during compositional fluid flow simulation in
porous media (Coats, 1980; Pal and Mandal, 2021; Young and Ste-
phenson, 1983) and in pipes (Furukawa et al., 1986; Gould, 1979).
Therefore, various researchers have proposed iterative and non-iterative
approaches to accelerate flash calculations in compositional reservoir
simulation. Some of the iterative techniques include the minimization of
Gibb’s free energy (Nichita et al., 2002), dimensionality reduction

(Firoozabadi and Pan, 2000; Nichita and Graciaa, 2011; Pan & Fir-
oozabadi, 2001), and solving the Rachford-Rice equation by minimizing
a non-monotonic convex function (Okuno et al., 2010). Some
non-iterative techniques include interpolating data from look-up tables
(Voskov and Tchelepi, 2009; Belkadi et al., 2011; Wu et al., 2015).

In recent years, researchers have leveraged machine learning (ML)
advancements to improve the speed and accuracy of compositional
simulation (Gaganis and Varotsis, 2012, 2014). This has been accom-
plished primarily through the use of supervised ML algorithms such as
support vector machines (SVMs) (Gaganis and Varotsis, 2012, 2014),
relevance vector machines (RVMs) (Kashinath et al., 2018), and deep
neural networks (DNNs) (Kashinath et al., 2018, K. Wang et al., 2019a,
2019b; Li et al., 2019; S. Wang et al., 2019a, 2019b). Considering that
the use of trained DNNs to predict flash calculation results has been
shown to be over two order of magnitudes faster than the standard

* Corresponding author.
E-mail address: folorode@lsu.edu (O. Olorode).

Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

https://doi.org/10.1016/j.petrol.2022.110175
Received 29 September 2021; Received in revised form 21 December 2021; Accepted 12 January 2022

mailto:folorode@lsu.edu
www.sciencedirect.com/science/journal/09204105
https://www.elsevier.com/locate/petrol
https://doi.org/10.1016/j.petrol.2022.110175
https://doi.org/10.1016/j.petrol.2022.110175
https://doi.org/10.1016/j.petrol.2022.110175
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2022.110175&domain=pdf

Journal of Petroleum Science and Engineering 211 (2022) 110175

2

iterative flash procedure (Li et al., 2019), Wang et al. (2020) showed
that it yields an excellent match when implemented in compositional
reservoir simulators. Although these supervised ML algorithms have
been used to create accurate proxy models that are trained with data
from rigorous compositional models, it is essential to note that these
algorithms can generate predictions that do not honor the underlying
physics for phase equilibrium. This is because the loss function in these
ML models is simply a function of the difference between the training
data and the model prediction of phase mole fractions (xi and yi) and
liquid fractions. So, there is a considerable probability of generating
model predictions that have low loss function values but do not yield the
given overall mole fractions when combined according to the interphase
mass balance equation.

To address the challenge of honoring physical laws during the
training of DL models, several authors have developed frameworks that
enable the integration of physics into deep learning. The most common
approach involves adding governing partial differential equations
(PDEs), initial and boundary conditions as penalties in the loss function
(Raissi and Karniadakis, 2018; Raissi et al., 2019; and Haghighat and
Juanes, 2021). Others have also demonstrated the potential of imple-
menting PDE constraints as extensions to the computational graph for
the deep neural network (Huang et al., 2020; Xu and Darve, 2020).
However, no publication has incorporated physical constraints into the
machine learning models trained with data from two-phase flash. To
address this limitation, we presented the initial attempt of incorporating
physical constraints into DL models for two-phase flash calculations in
Ihunde and Olorode (2021).

Although deep learning has been applied successfully to various
problems such as computer vision and image classification, autonomous
driving, speech recognition, and recommender systems, its application
to physics or engineering problems is still relatively new. Considering
that PDEs govern several physical processes, it is easy to see why most of
the previous publications on PINNs focus on incorporating PDEs, initial
and boundary conditions into the training of these models. However, a
few authors (Daw et al., 2021; Kashinath et al., 2021) have presented the
use of PINNs to include other physical laws that are not PDEs. The
critical requirement is that the physics-based equations added to the
standard or empirical loss function are continuous and differentiable
(Daw et al., 2021). This work evaluates the feasibility of including
thermodynamics constraints into DL models via the penalty approach.
We used this approach instead of the other techniques that enforce
physical constraints via custom neural network architectures (Beucler
et al., 2019; Jiang et al., 2020) because it is efficient and straightforward
to implement and interpret. Although we refer to this approach as PINN,
it is also commonly referred to as the physics-constrained deep learning
(PCDL) or physics-guided neural network (PGNN) model.

This paper summarizes the procedure for phase equilibrium calcu-
lations, which is used to generate the data for training the PINN and DL
models. Next, we discuss deep learning and how we incorporate physics
into these models. Finally, we conclude with a discussion of our PINN
model results compared to the standard DL model results.

1.1. Phase equilibrium (flash) calculations

The conventional approach to solve phase-equilibrium equations
involves satisfying the equality of fugacity, interphase mass balance, and
component balance constraints. This is achieved using the successive
substitution and/or the Newton-Raphson iteration. Given a fluid
mixture with N components, the cubic equations of state (EOS) is used to
describe its phase behavior. The model parameters of the EOS include
the critical temperature (Tc), critical pressure (Pc), acentric factor (ω),
and molecular weight (M) of each hydrocarbon component (Fir-
oozabadi, 2016). The binary interaction coefficient (bic) between each
pair of hydrocarbon components is also a required model parameter.

For a two-phase liquid/vapor system, the pressure (P), temperature
(T), and overall mole fraction of each fluid component (zi) completely

define the state of the fluid mixture. The output of the flash calculation
includes the liquid fraction (L) or vapor fraction (V), and the mole
fractions of the liquid and vapor phases, which are xi and yi, respec-
tively.

1.1.1. Equal fugacity constraint
At chemical equilibrium, the chemical potential of each hydrocarbon

component in the liquid phase must be the same as that in the vapor
phase. Considering that fugacity is a proxy for chemical potential,
chemical equilibrium is achieved when the fugacity of each component
in the liquid phase is the same as that in the vapor phase. For compo-
nents i = 1 …., N, the equal fugacity constraint is given as:

fLi(xi,PL,T)= fVi(yi, PV ,T), [1]

where fLi andfVi are the fugacities of each hydrocarbon component in the
liquid and vapor phases, whereas PL and PV are the pressures of the
liquid and vapor phases. When this constraint is satisfied, the chemical
potential of each fluid component in both phases is the same. This work
computes the fugacities as detailed in Peng and Robinson (1976) and
Firoozabadi (2016)

1.1.2. Interphase mass balance constraint
The overall mole fraction of each component (zi) can be written as a

function of the phase mole fractions (xi and yi) and vapor fraction as
follows:

zi =Vyi + (1 − V)xi. [2]

By combining the definition of the vapor-liquid equilibrium factor
(ki = yi/xi) with Eq. [2], we obtain the following expressions for the
phase mole fractions:

xi =
zi

V(ki − 1) + 1
, [3]

yi =
ziki

V(ki − 1) + 1
= kixi. [4]

The Wilson’s correlation (Wilson, 1968) gives the initial K-values (ki)
to be used in the iterative solution of the Rachford-Rice (RR) equation.

Combining Eqs. [3] and [4], we obtain the Rachford-Rice (RR)
equation:

RR=
∑N

i=1
(yi − xi)=

∑N

i=1

zi(ki − 1)
V(ki − 1) + 1

= 0. [5]

Solving the Rachford-Rice (RR) equation yields the vapor mole
fraction, V.

1.1.3. Component balance constraint
The component balance constraint is the final constraint required in

phase-equilibrium calculations. It ensures that the overall mole fractions
and phase mole fractions of every component sum up to one. That is,

∑nc

j=1
xj = 1,

∑nc

j=1
yj = 1,

∑nc

j=1
zj = 1, [6]

where nc is the total number of components in the mixture.

1.2. Generation of training and test data

To generate the data that is used to train the machine learning
models presented in this work, we employ the two-phase flash algorithm
summarized in Fig. 1. This algorithm starts with a Michelsen stability
test (Michelsen, 1982a, 1982b) at the given pressure and temperature to
determine if the fluid mixture is stable in the single-phase state or not. If
the fluid is stable in the single-phase state, there is no need to compute
the phase mole fractions from the Rachford-Rice equation. Otherwise,

T.A. Ihunde and O. Olorode

Journal of Petroleum Science and Engineering 211 (2022) 110175

3

we solve the RR equation using the successive substitution and/or
Newton-Raphson’s method(s) to obtain the vapor fraction. We then es-
timate the phase mole fractions from Eqs. [3] and [4], using an initial
estimate of K-value from Wilson’s correlation (Wilson, 1968). Finally,
we update the K-value and repeat the process of solving the RR equation
until the change in the K-value between two successive iterations be-
comes negligible. The final value of the phase mole-fractions is taken as
the xi and yi values.

Although the approach presented is applicable regardless of the
number of components, this work consists of one million different three-
component fluid mixtures, which are generated using a space-filling
mixture design. The MATLAB Reservoir Simulation Toolkit (MRST)
(Lie, 2019) is used to perform stability analysis and isothermal
two-phase flash, which yields the corresponding phase mole fractions
and vapor fraction at 100 different pressures between 14.7 psi to 5000
psi. A smaller subset of the data is used to train, validate, and test the

models built in this work. Table 1 shows the first six rows of a randomly
selected subset of the data. The first four columns (unshaded columns)
represent the overall composition and pressure, which are the input
variables for the flash calculations. The temperature is not provided in
the table because this work focuses on isothermal applications as proof
of the concept. So, we kept the temperature of all fluid mixtures at a
constant value of 353 K (176 ◦F). The grey-shaded columns in the table
represent the output variables obtained from the two-phase flash com-
putations. This work aims to train deep neural networks (with and
without physics constraints) using the input data (white columns in
Table 1) to predict the output data. The subscripts 1, 3, and 14 in the
overall and phase compositions indicate that the fluids studied are based
on three-component mixtures, which consist of methane (C1), propane
(C3), and tetradecane (C14).

The one million fluid mixtures generated were split in ratio 70:15:15
for training, validation, and testing, respectively. The training and

Fig. 1. Flow chart illustrates the algorithm for two-phase equilibrium calculations.

Table 1
Excerpt from the dataset used to train the ML models.

zmethane zpropane zC14 Pressure (psi) Vapor Fraction xmethane xpropane xC14 ymethane ypropane yC14

0.030 0.852 0.118 4345 0 0.030 0.852 0.118 0 0 0
0.245 0.397 0.358 1626 0 0.245 0.397 0.358 0 0 0
0.903 0.094 0.003 367 1 0 0 0 0.903 0.094 0.003
0.684 0.315 0.001 1676 1 0 0 0 0.684 0.315 0.001
0.686 0.137 0.177 820 0.297 0.592 0.157 0.251 0.909 0.088 0.004
0.613 0.220 0.168 1072 0.645 0.217 0.311 0.472 0.831 0.169 0.000

T.A. Ihunde and O. Olorode

Journal of Petroleum Science and Engineering 211 (2022) 110175

4

validation datasets are used during the training process while the test
dataset is withheld and unseen by the models. To generate a reliable
generalized model, the data used to train the classification model needs
to have a balanced class distribution of the three possible phase states-
—liquid, vapor, and two-phase. This is important because a model
trained on an imbalanced dataset will preferentially perform better on
the class with the highest number of observations.

1.3. Deep neural networks (DNN)

This section provides a summary of the key components of DNNs. For
a more detailed introduction, the reader is referred to classical textbooks
(Goodfellow et al., 2016; Trask, 2019; Weidman, 2019) on this active
field of research. Here, we start by defining a neural network as a
nonparametric machine learning model that can be trained on any
nonlinear data. It is a collection of nodes or units that are connected by a
directed link. For example, a link from unit i to unit j propagates an
activation, ai from i to j. The activation ai is equivalent to input, xi in the
case of an external input activation and yj in the case of an external
output activation. Each link’s numerical weight (wi,j) determines the
strength and sign of the connection between the pair of units.

It is worth noting that each unit has a dummy input (a0 = 1) with a
corresponding weight (w0,j), which is referred to as the bias. We
compute the output of each unit by applying an activation function (σ)
to the weighted sum of its inputs as follows:

aj = σ
(
∑n

i=0
wi,jai

)

. [7]

The activation function could be a rectified linear unit (ReLU), a hard
threshold, hyperbolic tangent, or a sigmoid function. This gives the
neural network the flexibility to represent any nonlinear function. The
activation function used in the output unit also ensures that the output
phase mole fractions range between zero and one. For a neural network
with m layers, the activation aj from Eq. [7] can be combined with other
activations in a feed-forward network to obtain the final output of the
network:

ŷj =
∑m

∘
∑m− 1

∘…∘
∑1

∘
∑0 (

aj
)
, [8]

where

∑i (
aj
)
= σ
(
∑n

i=0
wi,jai

)

. [9]

To train this multilayer neural network, we use the gradient of the
loss function to update the weights of all the units in all the layers i = 1 …
m. This is achieved using a backpropagation algorithm that minimizes
the loss function (L). The loss function used in this work is the mean-
squared error (MSE), which is given as:

L(w)=
1
N

∑(
yj − ŷj

)2
, [10]

where yj is the actual output value and ŷj is the predicted output value.
To minimize this function using a gradient-based (or stochastic gradient)
method, we need to find the function’s gradient with respect to the
weights. This is achieved as follows (Russell and Norvig, 2016):

∂Lk

∂wi,j
= − 2(yk − ak)

∂ak

∂wi,j
= − 2△kwj,kσ′

(
∑n

i=0
wi,jai

)

ai, [11]

where △k is a modified error, which is defined as:

△k =
(

yj − ŷj
)
σ′

(
∑n

i=0
wi,jai

)

. [12]

The weights are then updated using a stochastic gradient descent
algorithm in batch mode. However, the simple gradient descent update
of the weights and biases is given as:

wnew
i,j =wold

i,j + l
∂Lk

∂wi,j
. [13]

Here, l is the learning rate or weight decay parameter that controls
the change in the weights from one iteration to another. At initial con-
ditions, the weights and biases are set to small random values and then
changed as the network learns (Shmueli et al., 2017).

1.4. Introduction of the physics-informed neural networks

As discussed in the introduction, this work employs the penalty-
based approach to augment the standard loss functions with addi-
tional physics-based terms. As in Raissi et al. (2019), this approach ex-
tends the standard loss function in Eq. [10] to include the mean-squared
error (MSE) that is associated with the governing PDEs, as well as initial
and boundary conditions as follows:

L=MSE1 + MSE2 + MSE3, [14]

\where MSE1 , MSE2 , and MSE3 are the MSEs associated with the
standard DL, PDE, and boundary conditions, respectively. Note that
Raissi et al. (2019) also presented a version of the equation that incor-
porated the loss associated with the PDE (MSE2)only instead of both
MSE2 and MSE3 .

Here, we point out that simply summing up the MSEs implicitly as-
sumes equal weights in this multi-objective optimization problem.
Considering that each of the MSEs in this equation could vary in
magnitude, there is no guarantee that all three MSEs will be minimized
to the same degree. On the contrary, the largest of these three MSEs
typically gets minimized the most. In this work, we propose using a
weighted summation of the standard DL MSE (Eq. [10]) and the ther-
modynamics constraints discussed previously. Of the three thermody-
namics constraints, we only consider the interphase mass balance and
component balance constraints because the equality of fugacity is
computationally expensive.

Generating training data from the iterative solution of the Rachford-
Rice equation is analogical to the use of a numerical or analytical model
to create the training data for standard PDE-based PINNs like in Raissi
et al. (2019) and Haghighat and Juanes (2021). Similarly, we use the
interphase mass balance and component balance constraints instead of
the PDEs in these previous publications. This work aims to demonstrate
the feasibility of incorporating physical constraints that do not have to
be PDEs.

The modified loss function used in this work is given as:

L= λ1MSE1 + λ2MSE2 + λ3MSE3, [15]

where these three MSEs are given as:

MSE1 =
1
N
∑N

i=1

∑M

j=1

(
yi,j − ŷi,j

)2
, [16]

MSE2 =
1
N
∑N

i=1

∑nc

j=1

(
xi,j(1 − Vi) + yi,jVi − zi,j

)2
, [17]

MSE3 =
1
N

∑N

i=1

∑nc

j=1

(
xij − yij

)2
, [18]

and λ1, λ2, and λ3 are the corresponding weights. Note that the inner
summation in Eq. [16] is over the total number of variables M, whereas
it is over the total number of components nc in Eqs. [17] and [18]. A
comparison of the equations for MSE2 and MSE3 with the equations for
the interphase mass balance and component balance constraints (Eqs.

T.A. Ihunde and O. Olorode

Journal of Petroleum Science and Engineering 211 (2022) 110175

5

[2] and [6]) indicates that these equations correspond to both con-
straints in the homogeneous form. In contrast, MSE1 is the data misfit,
which is based on the difference between the model and the training
data, as in Eq. [10]. To evaluate the significance of MSE2 and MSE3
without one masking the effect of the other, we only run them in
isolation in this work. This implies that we have two main scenar-
ios—one with a loss function that only involves MSE1 and MSE2, and
another which involves MSE1 and MSE3.

1.4.1. Model evaluation metrics
We evaluate the effectiveness of the PINN model at honoring the

physical constraints using the root mean squared error (RMSE). For the
interphase mass balance constraint, we compute the RMSE as:

RMSE2 =

̅̅̅
∑n

i=1

∑nc
j=1

{(
zi,j −

[
x̂i,j(1 − V̂i) + ŷi,j V̂

])2}

N

√
√
√
√
√

[19]

Considering that the overall mole-fractions provided are guaranteed
to sum up to one, the component balance constraint will consist of two
different RMSEs—one for the liquid phase (RMSEL) and the other for the
vapor phase (RMSEV). These two RMSEs are computed as:

RMSEL =

̅̅
∑n

i=1

((∑nc
j=1 x̂i,j

)
− 1
)2

N

√
√
√
√
√

[20]

RMSEV =

̅̅
∑n

i=1

((∑nc
j=1 ŷi,j

)
− 1
)2

N

√
√
√
√
√

[21]

For simplicity, we combine these two RMSEs by adding them
together to obtain the RMSE for the component balance constraint as
follows:

RMSE3 =RMSEL + RMSEV . [22]

1.5. Implementation of the physics-informed neural networks

This work focuses on developing a PINN regression model for pre-
dicting the phase compositions and vapor fraction. We implement the
PINN models using the SciANN Python package presented in Haghighat
and Juanes (2021). A fully connected feed-forward deep neural network
is constructed with the loss function modified to account for the physical
constraints. The inputs and outputs of the PINN model used in this work
are shown in Fig. 2, which is a sketch of the neural network. In this
figure, zi, xi, and yi, represent the overall, liquid-phase, and gas-phase
mole fractions, whereas, “isLiquid” and “isGas” are dummy variables

that indicate whether the fluid exists in the liquid, gas, or two-phase
state. Note that the two-phase state is not provided to avoid the
well-known “dummy-variable trap” (Suits, 1957). Table 2 summarizes
the specification of the deep neural network.

1.5.1. K-fold cross-validation
Due to the stochastic nature of the random initial neural network

weights and the stochastic gradient optimizers used to train the model,
the predicted outputs typically change even if the same model is trained
several times on the same input data. So, we perform seven-fold cross-
validation, where seven DL models with the same parameters are trained
and tested on different subsets of the training data. This allows us to
quantify the model’s performance in terms of its mean and standard
deviation, leading to better estimates of its performance on unseen data.
In each of the seven folds, 6/7 of the training and validation data is used
to train the model. In contrast, the remaining 1/7 of the data is used to
validate the model’s performance. So, we obtain seven different per-
formance estimates from each of the specified DNN model parameters.
These are used to generate the box plots presented in the next section.
Additionally, the seven models generated with each combination of
model parameters are saved and combined using an equal weighting
scheme to form an ensemble model. This technique, which is known as
model averaging or bootstrap aggregating (“bagging” for short), helps to
reduce the generalization error (Breiman, 1996) and typically out-
performs the single best-performing model (Goodfellow et al., 2016).

1.6. Discussion of results

1.6.1. PINNs with interphase mass balance constraint
This section compares the results from a PINN model to those from a

standard DL model. The use of the weighted sum of MSEs allows us to
obtain the results of a standard DL model by setting the values of λ2 and

Fig. 2. Neural network sketch shows the hidden layers and input and output variables of the DNN and PNN models.

Table 2
Specification of the neural network.

Dataset Training: 700,000 Testing: 150,000 Validation: 150,000
Network Input layer has 6 neurons; 4 hidden layers have 128

neurons each; output layer has 7 neurons
Batch size 256
Number of epochs 300
Optimizer Adam
Modified Loss function λ1L1 + λ2L2 + λ3L3

Hidden layer activation
function

ReLU

Output layer activation
function

Sigmoid

Metric MSE

T.A. Ihunde and O. Olorode

Journal of Petroleum Science and Engineering 211 (2022) 110175

6

λ3 to zero because λ1 is set to a constant value of one in all cases. So, to
include only the interphase mass balance constraint, we simplify Eq.
[15] as follows:

L=MSE1 + λ2MSE2 . [23]

It is essential to determine the value of λ2 that minimizes the errors
associated with the data misfit (MSE1) and the interphase mass balance
constraint (MSE2). To this end, Fig. 3 presents a box plot of the RMSE of
the interphase mass balance constraint and R2 value on the primary and
secondary Y-axes, respectively. These values are plotted against weight
λ2 on the X-axis to find the optimum value of λ2where the RMSE of the
interphase mass balance constraint is minimized, and the R2 is still very
high. The RMSE measures the degree to which the model honors the
laws governing phase equilibrium, whereas the R2 quantifies the
model’s overall accuracy. The weight (λ2) is set to values ranging be-
tween 0 and 10, with the first box at a weight of zero in Fig. 3 being
essentially a standard DL model with no physics constraint.

As mentioned in the previous section, the box plots in Fig. 3 are
generated using the seven estimates of RMSE and R2 from the seven-fold
cross-validation. Although we tried a computationally expensive multi-
objective optimization of the weights, the approach of systematically
increasing the weights while observing the changes in the RMSE and R2

values yields valuable insights into the model performance at different
λ2 values. From Fig. 3, we observe that the RMSE of the interphase mass
balance error drops from 2.7% to 1.2% when the weight λ2 is increased
from 0 to 2, after which the R2 value declines more appreciably. Finally,
we conclude from this figure that the optimum weight to be used in the
interphase mass balance constraint is ~1.73. This is because the RMSE
only decreases slightly while the R2 value decreases significantly when
λ2 is increased above 1.73.

Table 3 presents a comparison between the PINN and DNN models
using the R2 and RMSE of the data misfit and the two physics constraints.
In this table, “PINN1” and “DNN1” refer to the model results with/
without the interphase mass balance constraint, whereas “PINN2” and
“DNN2” refer to corresponding results with/without the component
balance constraint. Additionally, we obtained the tabulated from the
best single PINN and best single DNN models instead of the ensemble
model results. This standard practice when benchmarking models helps
avoid the natural effect of improved model performance due to model
averaging (Goodfellow et al., 2016).

Table 3 shows that the RMSEs for the two physical constraints are
lower in the PINN models than in their corresponding DNN models. This
indicates that the physics-based constraints included in the PINN models
results in model predictions that honor these physical laws, whereas
DNN models only minimize the empirical loss function. Although the R2

and overall RMSE are the same in “DNN1” and “DNN2” because they
refer to the same model, the RMSEs are different. This is because the
physics RMSE in DNN1 refers to the interphase mass balance RMSE (Eq.
[19]).

Whereas that of DNN2 refers to the component balance RMSE (Eq.
[22]). Despite the fact that the overall RMSE and R2 are approximately
the same in the PINN1 and DNN1 models, the interphase mass balance
RMSE for the PINN1 model is 55% less than that of the DNN1 model. So,
we can conclude that the PINN model honors the interphase mass bal-
ance constraints at the selected λ2 value of 1.73. Additionally, this result
and Eq. [19] clearly show that unlike the overall RMSE and R2 that
simply compare model predictions to test data, the physics RMSE for
PINN1 directly quantifies the degree to which the predicted phase
compositions and vapor fraction honors the interphase mass balance.

1.6.2. PINNs with component balance constraint
Here, we discuss the results from training PINNs with a component

balance constraint. In this case, we simplify the loss function in Eq. [15]
as follows:

L=MSE1 + λ3MSE3 . [24]

Eqs. [23] and [24] implicitly show that the two physical constraints
were incorporated and optimized in isolation. This is to keep the opti-
mization of these weights simple to interpret and implement. Fig. 4
presents a box plot of the RMSE of the component balance error and R2

of the model against λ3. It shows that the RMSE drops from 0.15% to
0.02% while the R2 remains fairly constant as λ3 is increased from zero
to 2.24. So, the optimum weight for the component balance constraint is

Fig. 3. Box plots show how the model accuracy and physics constraint errors (indicated by the R2 and RMSE, respectively) vary with the weights applied to the
interphase mass balance constraint.

Table 3
Comparison of PINN to DNN model.

PINN1 DNN1 PINN2 DNN2

Overall Model R2 0.9658 0.9663 0.9683 0.9663
Overall RMSE 0.0356 0.0399 0.03887 0.0399
Physics RMSE 0.0118 0.0265 0.00015 0.00126

T.A. Ihunde and O. Olorode

Journal of Petroleum Science and Engineering 211 (2022) 110175

7

~2.24. Table 3 shows that the component balance RMSE for PINN2 is
88% less than that for DNN2. This indicates that the PINN model honors
the component balance constraints at the selected λ3 value of 2.24.
Unlike the overall model RMSE and R2, Eqs. [19] through [21] show
clearly that the component balance and interphase mass balance RMSEs
are not computed relative to the test data. They are entirely functions of
the predicted data, making them excellent metrics to quantify the degree
to which the predicted phase compositions and vapor fraction honor
physics constraints and not just the degree to which they match the test
data.

Comparing the RMSEs in Fig. 3 to those in Fig. 4 and Table 3 shows
that the component balance RMSEs are one order of magnitude lower
than the interphase mass balance RMSEs. This could be attributed to the
ability of standard DNN models to infer that the phase compositions
should sum to one without implementing it into the loss function
explicitly. In contrast, the interphase mass balance constraint is more
complex because it is a linear combination of the predicted vapor frac-
tion, overall, and phase mole fractions. Additionally, the component
balance error could be much smaller because the DNN models can learn
the component balance constraint from the implicit component balance
in the overall mole fractions in the training data. Therefore, the
remainder of this paper focuses on PINNs with the interphase mass
balance constraint only.

The DNN and PINN models are used to predict the xi, yi, and V of the
150,000 fluid mixtures in the test dataset. The predicted fluid mixtures
are then ranked in percentiles based on each mixture’s interphase mass
balance errors in the PINN model, which is approximately the same as
the DNN model’s ranking. The overall composition of the fluid mixtures
at the 99th, 75th, 50th, 25th, and 1st error percentiles are used to create
the phase diagrams in Fig. 5. The other two curves in the pressure-
temperature (P-T) phase diagrams are based on the same fluid mix-
tures but with different overall compositions. The “actual” overall
composition is simply taken from the zi values for the corresponding
fluid mixture in the test data to obtain the dotted red lines. However, for
the DNN and PINN models, the overall mole fractions were computed
from the predicted phase mole fractions using Eq. [2]. Table 4 shows the
total and interphase mass balance errors associated with each fluid
mixture at the outlined percentiles. The total error is the sum of the
absolute difference between the predicted phase compositions and

vapor fractions from the PINN and DNN models and their corresponding
values in the test data. Similarly, the “physics 1 error” is the absolute
value of “zi − Vyi − (1 − V)xi” from Eq. [2]. This table shows that the
PINN model outperforms the DNN model at all percentiles.

The P-T phase diagrams in Fig. 5(a) are based on model predictions
of the overall mole fraction for a fluid mixture at pressure and temper-
ature conditions where the composition exists in the single-phase liquid
state. Under such conditions, the estimated zi values exactly match the
actual zi values because the xi’s are identical to the zi values, whereas yi
and V are zeros. So, in Fig. 5(a), the DNN and PINN models also match
the actual P-T phase diagram exactly. The remaining images in Fig. 5
show the corresponding phase diagrams for two-phase fluid mixtures at
the specified percentiles. Although these phase diagrams cover a wide
range of temperature and pressure values, the input data used to create
them correspond to a single point in the P-T phase diagram. So, it is
unrealistic to expect a machine learning model trained to predict the
fluid properties for a distinct fluid mixture at only one pressure and
temperature to match the actual phase behavior over a wide pressure
and temperature range over which it is not trained.

The results in Fig. 5 show that the prediction of the phase diagram
based on the PINN model outperforms the DNN model in all cases. The
black vertical line highlights the isothermal temperature (of 176 ◦F) at
which all the fluid compositions were specified. As expected, the devi-
ation of the models from the actual saturation pressure at this temper-
ature increases as the error percentile decreases. Although the R2 and
RMSE for the models in Table 3 do not indicate a significant difference in
the results, Table 4 and the phase diagrams for the predicted phase
compositions show that incorporating physics with PINNs yields pre-
dictions that more accurately describe the phase behavior of composi-
tional fluid mixtures. This is because incorporating physics-based
constraints via custom loss functions is known to act as a physics-based
regularization that helps solve ill-posed problems and prevent over-
fitting (Kashinath et al., 2021). Finally, the DNN models show excellent
performance metrics, but the predictions may not honor the thermo-
dynamics constraints of phase equilibrium, which are not imposed
during the model training. PINNs address this limitation and yield better
model predictions that honor the physical constraints of phase equilib-
rium. Additionally, our timing results show that the trained PINN
models are 145 times faster than the standard iterative flash procedure.

Fig. 4. Box plots show how the model accuracy and physics constraint errors (indicated by the R2 and RMSE, respectively) vary with the weights applied to the
component balance constraint.

T.A. Ihunde and O. Olorode

Journal of Petroleum Science and Engineering 211 (2022) 110175

8

2. Conclusions

This work presents the incorporation of thermodynamics constraints
into deep learning models for two-phase flash calculations. It is achieved

by modifying the standard loss function to include these physics con-
straints as a weighted sum of mean-squared errors. We performed a
sensitivity study that showed the change in the overall R2 and RMSE
with increasing weights to determine the optimum weights used in the
custom loss function. We generated one million unique fluid mixtures
from a space-filling mixture design to obtain the data needed in this
work. These mixtures’ pressure, temperature, and overall composition
were used to predict the flash output variables. Of the one million fluid
mixtures, 150,000 were withheld for testing, whereas the remaining
were partitioned between training and validation in a seven-fold cross-
validation.

The results show that incorporating thermodynamics constraints into
PINNs yields model predictions with over a 55% reduction in the physics
constraint errors (RMSE) when compared with DNNs. Although the
RMSE of the physics constraints reduced significantly, the difference
between the overall R2 value of the PINN and DNN models was

Fig. 5. Phase envelopes for compositions at different percentiles indicate that the PINN model yields a better description of the phase behavior than the DNN model.

Table 4
Summary of the performance of the DNN and PINN models at specific
percentiles.

Percentile PINN Total
error

PINN Physics I
error

DNN Total
error

DNN Physics I
error

99 8.60E-05 2.00E-06 1.20E-04 7.00E-05
75 1.33E-03 1.20E-05 3.91E-03 7.30E-04
50 1.22E-02 2.16E-03 2.37E-02 2.17E-02
25 7.37E-02 1.47E-02 1.35E-01 2.19E-02
1 4.07E-01 1.34E-02 4.13E-01 2.83E-02

T.A. Ihunde and O. Olorode

Journal of Petroleum Science and Engineering 211 (2022) 110175

9

negligible (<0.05%). This indicates that using PINNs results in model
predictions that honor physical constraints without reducing overall
model accuracy. Finally, we presented phase diagrams that show that
the PINN model significantly outperforms the DNN model in predicting
compositional fluid behavior.

CRediT author statement

Thelma Ihunde: Data curation, Writing — original draft prepara-
tion, Visualization, Investigation, and Validation. Olufemi Olorode:
Supervision, Conceptualization, Methodology, Software, Writing—
Reviewing and Editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors recognize the support of the Craft and Hawkins
Department of Petroleum Engineering at Louisiana State University.
This work was facilitated using the computational resources and soft-
ware packages available in the department and at the Center for
Computation and Technology.

Nomenclature

fLi fugacity of component i in the liquid phase
fVi fugacity of component i in the vapor phase
ki vapor-liquid equilibrium factor
L loss function
MSE mean square error, which is used as the loss function
P pressure
RMSE root mean square error, which is used as a metric
R2 coefficient of determination, which is used as a metric
T temperature
V vapor fraction
xi mole fraction of component, i in the liquid phase
yi mole fraction of component, i in the gas phase
zi overall mole fraction of component, i.

References

Belkadi, A., Yan, W., Michelsen, M.L., Stenby, E.H., 2011. Comparison of two methods
for speeding up flash calculations in compositional simulations. In: SPE Reservoir
Simulation Symposium.

Beucler, T., Rasp, S., Pritchard, M., Gentine, P., 2019. In: Achieving Conservation of
Energy in Neural Network Emulators for Climate Modeling arXiv preprint arXiv:
1906.06622.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24 (2), 123–140.
Coats, K.H., 1980. An equation of state compositional model. Soc. Petrol. Eng. J. 20 (5),

363–376.
Daw, A., Karpatne, A., Watkins, W., Read, J., Kumar, V., 2021. Physics-guided Neural

Networks (Pgnn): an Application in Lake Temperature Modeling arXiv preprint
arXiv:1710.11431.

Firoozabadi, A., 2016. Thermodynamics and Applications in Hydrocarbon Energy
Production. McGraw-Hill Education.

Firoozabadi, A., Pan, H., 2000. Fast and robust algorithm for compositional modeling:
Part i-stability analysis testing. In: SPE Annual Technical Conference and Exhibition.

Furukawa, H., Shoham, O., Brill, J., 1986. Predicting Compositional Two-phase Flow
Behavior in Pipelines.

Gaganis, V., Varotsis, N., 2012. Machine learning methods to speed up compositional
reservoir simulation. In: SPE Europec/EAGE Annual Conference.

Gaganis, V., Varotsis, N., 2014. An integrated approach for rapid phase behavior
calculations in compositional modeling. J. Petrol. Sci. Eng. 118, 74–87.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT press.
Gould, T.L., 1979. Compositional two-phase flow in pipelines. J. Petrol. Technol. 31 (3),

373–384.
Haghighat, E., Juanes, R., 2021. Sciann: a keras/tensorflow wrapper for scientific

computations and physics-informed deep learning using artificial neural networks.
Comput. Methods Appl. Mech. Eng. 373, 113552.

Huang, D.Z., Xu, K., Farhat, C., Darve, E., 2020. Learning constitutive relations from
indirect observations using deep neural networks. J. Comput. Phys. 416, 109491.

Ihunde, T.A., Olorode, O., 2021. Application of physics informed neural networks to
compositional modelling. In: SPE/AAPG/SEG Asia Pacific Unconventional Resources
Technology Conference.

Jiang, C.M., Kashinath, K., Prabhat, Marcus, P., 2020. Enforcing hard physical
constraints in cnns through differentiable pde layer. In: ICLR 2020 Workshop on
Integration of Deep Neural Models and Differential Equations.

Kashinath, A., Szulczewski, M.L., Dogru, A.H., 2018. A fast algorithm for calculating
isothermal phase behavior using machine learning. Fluid Phase Equil. 465, 73–82.

Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Esmaeilzadeh, S., Singh, A.,
2021. Physics-informed machine learning: case studies for weather and climate
modelling. Philos. Trans. Royal Soc. A 379 (2194), 20200093.

Li, Y., Zhang, T., Sun, S., 2019. Acceleration of the NVT flash calculation for
multicomponent mixtures using deep neural network models. Ind. Eng. Chem. Res.
58 (27), 12312–12322.

Lie, K.-A., 2019. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave:
User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge
University Press.

Michelsen, M.L., 1982a. The isothermal flash problem. Part I. Stability. Fluid Phase
Equil. 9 (1), 1–19.

Michelsen, M.L., 1982b. The isothermal flash problem. Part II. Phase-split calculation.
Fluid Phase Equil. 9 (1), 21–40.

Nichita, D.V., Gomez, S., Luna, E., 2002. Multiphase equilibria calculation by direct
minimization of Gibbs free energy with a global optimization method. Comput.
Chem. Eng. 26 (12), 1703–1724.

Nichita, D.V., Graciaa, A., 2011. A new reduction method for phase equilibrium
calculations. Fluid Phase Equil. 302 (1–2), 226–233.

Okuno, R., Johns, R.T., Sepehrnoori, K., 2010. A new algorithm for Rachford-Rice for
multiphase compositional simulation. SPE J. 15 (2), 313–325.

Pal, N., Mandal, A., 2021. Compositional Simulation Model and History-Matching
Analysis of Surfactant-Polymer-Nanoparticle (SPN) Nanoemulsion Assisted
Enhanced Oil Recovery. Journal of the Taiwan Institute of Chemical Engineers.

Pan, H., Firoozabadi, A., 2001. Fast and robust algorithm for compositional modeling:
part ii-two-phase flash computations. In: SPE Annual Technical Conference and
Exhibition.

Peng, D.-Y., Robinson, D.B., 1976. A new two-constant equation of state. Ind. Eng. Chem.
Fundam. 15 (1), 59–64.

Raissi, M., Karniadakis, G.E., 2018. Hidden physics models: machine learning of
nonlinear partial differential equations. J. Comput. Phys. 357, 125–141.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.

Russell, S.J., Norvig, P., 2016. Artifical Intelligence: A Modern Approach. Pearson.
Shmueli, G., Bruce, P.C., Yahav, I., Patel, N.R., Lichtendahl Jr., K.C., 2017. Data Mining

for Business Analytics: Concepts, Techniques, and Applications in R. John Wiley &
Sons.

Suits, D.B., 1957. Use of dummy variables in regression equations. J. Am. Stat. Assoc. 52
(280), 548–551.

Trask, A.W., 2019. Grokking Deep Learning. Simon and Schuster.
Voskov, D.V., Tchelepi, H.A., 2009. Tie-simplex based mathematical framework for

thermodynamical equilibrium computation of mixtures with an arbitrary number of
phases. Fluid Phase Equil. 283 (1–2), 1–11.

Wang, K., Luo, J., Wei, Y., Wu, K., Li, J., Chen, Z., 2019a. Artificial neural network
assisted two-phase flash calculations in isothermal and thermal compositional
simulations. Fluid Phase Equil. 486, 59–79.

T.A. Ihunde and O. Olorode

http://refhub.elsevier.com/S0920-4105(22)00067-5/sref1
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref1
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref1
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref2
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref2
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref2
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref3
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref4
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref4
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref5
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref5
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref5
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref6
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref6
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref7
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref7
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref8
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref8
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref9
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref9
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref10
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref10
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref11
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref12
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref12
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref13
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref13
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref13
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref14
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref14
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref15
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref15
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref15
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref16
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref16
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref16
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref17
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref17
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref18
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref18
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref18
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref19
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref19
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref19
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref20
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref20
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref20
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref21
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref21
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref22
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref22
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref23
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref23
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref23
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref24
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref24
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref25
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref25
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref26
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref26
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref26
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref27
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref27
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref27
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref28
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref28
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref29
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref29
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref30
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref30
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref30
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref31
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref32
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref32
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref32
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref33
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref33
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref34
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref35
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref35
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref35
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref36
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref36
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref36

Journal of Petroleum Science and Engineering 211 (2022) 110175

10

Wang, K., Luo, J., Wei, Y., Wu, K., Li, J., Chen, Z., 2020. Practical application of machine
learning on fast phase equilibrium calculations in compositional reservoir
simulations. J. Comput. Phys. 401, 109013.

Wang, S., Sobecki, N., Ding, D., Zhu, L., Wu, Y.-S., 2019b. Accelerating and stabilizing
the vapor-liquid equilibrium (VLE) calculation in compositional simulation of
unconventional reservoirs using deep learning based flash calculation. Fuel 253,
209–219.

Weidman, S., 2019. Deep Learning from Scratch: Building with Python from First
Principles. O’Reilly Media, Inc.

Wilson, G., 1968. A modified redlich–kwong eos, application to general physical data
calculations. In: AIChE 65th National Meeting, p. 15c.

Wu, Y., Kowitz, C., Sun, S., Salama, A., 2015. Speeding up the flash calculations in two-
phase compositional flow simulations–The application of sparse grids. J. Comput.
Phys. 285, 88–99.

Xu, K., Darve, E., 2020. Physics Constrained Learning for Data-Driven Inverse Modeling
from Sparse Observations arXiv preprint arXiv:2002.10521.

Young, L.C., Stephenson, R.E., 1983. A generalized compositional approach for reservoir
simulation. Soc. Petrol. Eng. J. 23 (5), 727–742.

T.A. Ihunde and O. Olorode

http://refhub.elsevier.com/S0920-4105(22)00067-5/sref37
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref37
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref37
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref38
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref38
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref38
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref38
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref39
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref39
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref40
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref40
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref41
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref41
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref41
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref42
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref42
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref43
http://refhub.elsevier.com/S0920-4105(22)00067-5/sref43

	Application of physics informed neural networks to compositional modeling
	1 Introduction
	1.1 Phase equilibrium (flash) calculations
	1.1.1 Equal fugacity constraint
	1.1.2 Interphase mass balance constraint
	1.1.3 Component balance constraint

	1.2 Generation of training and test data
	1.3 Deep neural networks (DNN)
	1.4 Introduction of the physics-informed neural networks
	1.4.1 Model evaluation metrics

	1.5 Implementation of the physics-informed neural networks
	1.5.1 K-fold cross-validation

	1.6 Discussion of results
	1.6.1 PINNs with interphase mass balance constraint
	1.6.2 PINNs with component balance constraint

	2 Conclusions
	CRediT author statement
	Declaration of competing interest
	Acknowledgments
	Nomenclature
	References

