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A B S T R A C T   

Compositional modeling is essential when simulating any process that involves significant changes in the 
composition of reservoir fluids. This includes modeling the flow of multicomponent hydrocarbons in pipes, 
surface facilities, and subsurface rocks. However, the rigorous thermodynamics approach to obtain phase 
composition is computationally expensive. So, various researchers have considered using machine learning 
models trained with rigorous phase-equilibrium (flash) calculations to improve computational speed. 

Unlike previous publications that apply classical deep learning (DL) models to flash calculations, this work will 
demonstrate the first attempt to incorporate thermodynamics constraints into the training of these models to 
ensure that they honor physical laws. To this end, we generated one million different compositions with a space- 
filling mixture design and performed two-phase flash to obtain the corresponding phase compositions. We 
performed seven-fold cross-validation to ensure reliable estimates of model accuracy. We compared the physics- 
constrained and standard DL model results to quantify the ability of our approach to honor physical constraints. 

The evaluation of our physics-informed neural network (PINN) model compared to a standard DL model shows 
that we can incorporate physical constraints without a considerable reduction in model accuracy. Based on the 
test data, our model evaluation results indicate that both PINN and standard DL models achieve coefficients of 
determination of 97%. In contrast, the root-mean-square error of the physics-constraint errors in the PINN model 
is at least two times smaller than in the standard DL model. To further demonstrate that our PINN model out-
performs the DL model in terms of honoring physical constraints, we generate phase envelopes using the overall 
compositions predicted using the PINN and DL models for several fluid mixtures in the test data. These results 
show the importance of incorporating the thermodynamic constraints into DL models.   

1. Introduction 

Compositional modeling involves stability analysis, where the sta-
bility of a fluid mixture in a single-phase state is determined at a given 
pressure and temperature. Next, phase equilibrium calculations (also 
known as flash) are performed to determine the mole fractions of the 
fluid components in the liquid and vapor phases (for two-phase flash). 
These calculations are needed in every representative elementary vol-
ume (REV) and time step during compositional fluid flow simulation in 
porous media (Coats, 1980; Pal and Mandal, 2021; Young and Ste-
phenson, 1983) and in pipes (Furukawa et al., 1986; Gould, 1979). 
Therefore, various researchers have proposed iterative and non-iterative 
approaches to accelerate flash calculations in compositional reservoir 
simulation. Some of the iterative techniques include the minimization of 
Gibb’s free energy (Nichita et al., 2002), dimensionality reduction 

(Firoozabadi and Pan, 2000; Nichita and Graciaa, 2011; Pan & Fir-
oozabadi, 2001), and solving the Rachford-Rice equation by minimizing 
a non-monotonic convex function (Okuno et al., 2010). Some 
non-iterative techniques include interpolating data from look-up tables 
(Voskov and Tchelepi, 2009; Belkadi et al., 2011; Wu et al., 2015). 

In recent years, researchers have leveraged machine learning (ML) 
advancements to improve the speed and accuracy of compositional 
simulation (Gaganis and Varotsis, 2012, 2014). This has been accom-
plished primarily through the use of supervised ML algorithms such as 
support vector machines (SVMs) (Gaganis and Varotsis, 2012, 2014), 
relevance vector machines (RVMs) (Kashinath et al., 2018), and deep 
neural networks (DNNs) (Kashinath et al., 2018, K. Wang et al., 2019a, 
2019b; Li et al., 2019; S. Wang et al., 2019a, 2019b). Considering that 
the use of trained DNNs to predict flash calculation results has been 
shown to be over two order of magnitudes faster than the standard 
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iterative flash procedure (Li et al., 2019), Wang et al. (2020) showed 
that it yields an excellent match when implemented in compositional 
reservoir simulators. Although these supervised ML algorithms have 
been used to create accurate proxy models that are trained with data 
from rigorous compositional models, it is essential to note that these 
algorithms can generate predictions that do not honor the underlying 
physics for phase equilibrium. This is because the loss function in these 
ML models is simply a function of the difference between the training 
data and the model prediction of phase mole fractions (xi and yi) and 
liquid fractions. So, there is a considerable probability of generating 
model predictions that have low loss function values but do not yield the 
given overall mole fractions when combined according to the interphase 
mass balance equation. 

To address the challenge of honoring physical laws during the 
training of DL models, several authors have developed frameworks that 
enable the integration of physics into deep learning. The most common 
approach involves adding governing partial differential equations 
(PDEs), initial and boundary conditions as penalties in the loss function 
(Raissi and Karniadakis, 2018; Raissi et al., 2019; and Haghighat and 
Juanes, 2021). Others have also demonstrated the potential of imple-
menting PDE constraints as extensions to the computational graph for 
the deep neural network (Huang et al., 2020; Xu and Darve, 2020). 
However, no publication has incorporated physical constraints into the 
machine learning models trained with data from two-phase flash. To 
address this limitation, we presented the initial attempt of incorporating 
physical constraints into DL models for two-phase flash calculations in 
Ihunde and Olorode (2021). 

Although deep learning has been applied successfully to various 
problems such as computer vision and image classification, autonomous 
driving, speech recognition, and recommender systems, its application 
to physics or engineering problems is still relatively new. Considering 
that PDEs govern several physical processes, it is easy to see why most of 
the previous publications on PINNs focus on incorporating PDEs, initial 
and boundary conditions into the training of these models. However, a 
few authors (Daw et al., 2021; Kashinath et al., 2021) have presented the 
use of PINNs to include other physical laws that are not PDEs. The 
critical requirement is that the physics-based equations added to the 
standard or empirical loss function are continuous and differentiable 
(Daw et al., 2021). This work evaluates the feasibility of including 
thermodynamics constraints into DL models via the penalty approach. 
We used this approach instead of the other techniques that enforce 
physical constraints via custom neural network architectures (Beucler 
et al., 2019; Jiang et al., 2020) because it is efficient and straightforward 
to implement and interpret. Although we refer to this approach as PINN, 
it is also commonly referred to as the physics-constrained deep learning 
(PCDL) or physics-guided neural network (PGNN) model. 

This paper summarizes the procedure for phase equilibrium calcu-
lations, which is used to generate the data for training the PINN and DL 
models. Next, we discuss deep learning and how we incorporate physics 
into these models. Finally, we conclude with a discussion of our PINN 
model results compared to the standard DL model results. 

1.1. Phase equilibrium (flash) calculations 

The conventional approach to solve phase-equilibrium equations 
involves satisfying the equality of fugacity, interphase mass balance, and 
component balance constraints. This is achieved using the successive 
substitution and/or the Newton-Raphson iteration. Given a fluid 
mixture with N components, the cubic equations of state (EOS) is used to 
describe its phase behavior. The model parameters of the EOS include 
the critical temperature (Tc), critical pressure (Pc), acentric factor (ω), 
and molecular weight (M) of each hydrocarbon component (Fir-
oozabadi, 2016). The binary interaction coefficient (bic) between each 
pair of hydrocarbon components is also a required model parameter. 

For a two-phase liquid/vapor system, the pressure (P), temperature 
(T), and overall mole fraction of each fluid component (zi) completely 

define the state of the fluid mixture. The output of the flash calculation 
includes the liquid fraction (L) or vapor fraction (V), and the mole 
fractions of the liquid and vapor phases, which are xi and yi, respec-
tively. 

1.1.1. Equal fugacity constraint 
At chemical equilibrium, the chemical potential of each hydrocarbon 

component in the liquid phase must be the same as that in the vapor 
phase. Considering that fugacity is a proxy for chemical potential, 
chemical equilibrium is achieved when the fugacity of each component 
in the liquid phase is the same as that in the vapor phase. For compo-
nents i = 1 …., N, the equal fugacity constraint is given as: 

fLi(xi,PL,T)= fVi(yi, PV ,T), [1]  

where fLi andfVi are the fugacities of each hydrocarbon component in the 
liquid and vapor phases, whereas PL and PV are the pressures of the 
liquid and vapor phases. When this constraint is satisfied, the chemical 
potential of each fluid component in both phases is the same. This work 
computes the fugacities as detailed in Peng and Robinson (1976) and 
Firoozabadi (2016) 

1.1.2. Interphase mass balance constraint 
The overall mole fraction of each component (zi) can be written as a 

function of the phase mole fractions (xi and yi) and vapor fraction as 
follows: 

zi =Vyi + (1 − V)xi. [2] 

By combining the definition of the vapor-liquid equilibrium factor 
(ki = yi/xi) with Eq. [2], we obtain the following expressions for the 
phase mole fractions: 

xi =
zi

V(ki − 1) + 1
, [3]  

yi =
ziki

V(ki − 1) + 1
= kixi. [4] 

The Wilson’s correlation (Wilson, 1968) gives the initial K-values (ki) 
to be used in the iterative solution of the Rachford-Rice (RR) equation. 

Combining Eqs. [3] and [4], we obtain the Rachford-Rice (RR) 
equation: 

RR=
∑N

i=1
(yi − xi )=

∑N

i=1

zi(ki − 1)
V(ki − 1) + 1

= 0. [5] 

Solving the Rachford-Rice (RR) equation yields the vapor mole 
fraction, V. 

1.1.3. Component balance constraint 
The component balance constraint is the final constraint required in 

phase-equilibrium calculations. It ensures that the overall mole fractions 
and phase mole fractions of every component sum up to one. That is, 

∑nc

j=1
xj = 1,

∑nc

j=1
yj = 1,

∑nc

j=1
zj = 1, [6]  

where nc is the total number of components in the mixture. 

1.2. Generation of training and test data 

To generate the data that is used to train the machine learning 
models presented in this work, we employ the two-phase flash algorithm 
summarized in Fig. 1. This algorithm starts with a Michelsen stability 
test (Michelsen, 1982a, 1982b) at the given pressure and temperature to 
determine if the fluid mixture is stable in the single-phase state or not. If 
the fluid is stable in the single-phase state, there is no need to compute 
the phase mole fractions from the Rachford-Rice equation. Otherwise, 
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we solve the RR equation using the successive substitution and/or 
Newton-Raphson’s method(s) to obtain the vapor fraction. We then es-
timate the phase mole fractions from Eqs. [3] and [4], using an initial 
estimate of K-value from Wilson’s correlation (Wilson, 1968). Finally, 
we update the K-value and repeat the process of solving the RR equation 
until the change in the K-value between two successive iterations be-
comes negligible. The final value of the phase mole-fractions is taken as 
the xi and yi values. 

Although the approach presented is applicable regardless of the 
number of components, this work consists of one million different three- 
component fluid mixtures, which are generated using a space-filling 
mixture design. The MATLAB Reservoir Simulation Toolkit (MRST) 
(Lie, 2019) is used to perform stability analysis and isothermal 
two-phase flash, which yields the corresponding phase mole fractions 
and vapor fraction at 100 different pressures between 14.7 psi to 5000 
psi. A smaller subset of the data is used to train, validate, and test the 

models built in this work. Table 1 shows the first six rows of a randomly 
selected subset of the data. The first four columns (unshaded columns) 
represent the overall composition and pressure, which are the input 
variables for the flash calculations. The temperature is not provided in 
the table because this work focuses on isothermal applications as proof 
of the concept. So, we kept the temperature of all fluid mixtures at a 
constant value of 353 K (176 ◦F). The grey-shaded columns in the table 
represent the output variables obtained from the two-phase flash com-
putations. This work aims to train deep neural networks (with and 
without physics constraints) using the input data (white columns in 
Table 1) to predict the output data. The subscripts 1, 3, and 14 in the 
overall and phase compositions indicate that the fluids studied are based 
on three-component mixtures, which consist of methane (C1), propane 
(C3), and tetradecane (C14). 

The one million fluid mixtures generated were split in ratio 70:15:15 
for training, validation, and testing, respectively. The training and 

Fig. 1. Flow chart illustrates the algorithm for two-phase equilibrium calculations.  

Table 1 
Excerpt from the dataset used to train the ML models.  

zmethane zpropane zC14 Pressure (psi) Vapor Fraction xmethane xpropane xC14 ymethane ypropane yC14 

0.030 0.852 0.118 4345 0 0.030 0.852 0.118 0 0 0 
0.245 0.397 0.358 1626 0 0.245 0.397 0.358 0 0 0 
0.903 0.094 0.003 367 1 0 0 0 0.903 0.094 0.003 
0.684 0.315 0.001 1676 1 0 0 0 0.684 0.315 0.001 
0.686 0.137 0.177 820 0.297 0.592 0.157 0.251 0.909 0.088 0.004 
0.613 0.220 0.168 1072 0.645 0.217 0.311 0.472 0.831 0.169 0.000  
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validation datasets are used during the training process while the test 
dataset is withheld and unseen by the models. To generate a reliable 
generalized model, the data used to train the classification model needs 
to have a balanced class distribution of the three possible phase states-
—liquid, vapor, and two-phase. This is important because a model 
trained on an imbalanced dataset will preferentially perform better on 
the class with the highest number of observations. 

1.3. Deep neural networks (DNN) 

This section provides a summary of the key components of DNNs. For 
a more detailed introduction, the reader is referred to classical textbooks 
(Goodfellow et al., 2016; Trask, 2019; Weidman, 2019) on this active 
field of research. Here, we start by defining a neural network as a 
nonparametric machine learning model that can be trained on any 
nonlinear data. It is a collection of nodes or units that are connected by a 
directed link. For example, a link from unit i to unit j propagates an 
activation, ai from i to j. The activation ai is equivalent to input, xi in the 
case of an external input activation and yj in the case of an external 
output activation. Each link’s numerical weight (wi,j) determines the 
strength and sign of the connection between the pair of units. 

It is worth noting that each unit has a dummy input (a0 = 1) with a 
corresponding weight (w0,j), which is referred to as the bias. We 
compute the output of each unit by applying an activation function (σ)
to the weighted sum of its inputs as follows: 

aj = σ
(
∑n

i=0
wi,jai

)

. [7] 

The activation function could be a rectified linear unit (ReLU), a hard 
threshold, hyperbolic tangent, or a sigmoid function. This gives the 
neural network the flexibility to represent any nonlinear function. The 
activation function used in the output unit also ensures that the output 
phase mole fractions range between zero and one. For a neural network 
with m layers, the activation aj from Eq. [7] can be combined with other 
activations in a feed-forward network to obtain the final output of the 
network: 

ŷj =
∑m

∘
∑m− 1

∘…∘
∑1

∘
∑0 (

aj
)
, [8]  

where 

∑i (
aj
)
= σ
(
∑n

i=0
wi,jai

)

. [9] 

To train this multilayer neural network, we use the gradient of the 
loss function to update the weights of all the units in all the layers i = 1 … 
m. This is achieved using a backpropagation algorithm that minimizes 
the loss function (L). The loss function used in this work is the mean- 
squared error (MSE), which is given as: 

L(w)=
1
N

∑(
yj − ŷj

)2
, [10]  

where yj is the actual output value and ŷj is the predicted output value. 
To minimize this function using a gradient-based (or stochastic gradient) 
method, we need to find the function’s gradient with respect to the 
weights. This is achieved as follows (Russell and Norvig, 2016): 

∂Lk

∂wi,j
= − 2(yk − ak)

∂ak

∂wi,j
= − 2△kwj,kσ′

(
∑n

i=0
wi,jai

)

ai, [11]  

where △k is a modified error, which is defined as: 

△k =
(

yj − ŷj
)
σ′

(
∑n

i=0
wi,jai

)

. [12] 

The weights are then updated using a stochastic gradient descent 
algorithm in batch mode. However, the simple gradient descent update 
of the weights and biases is given as: 

wnew
i,j =wold

i,j + l
∂Lk

∂wi,j
. [13] 

Here, l is the learning rate or weight decay parameter that controls 
the change in the weights from one iteration to another. At initial con-
ditions, the weights and biases are set to small random values and then 
changed as the network learns (Shmueli et al., 2017). 

1.4. Introduction of the physics-informed neural networks 

As discussed in the introduction, this work employs the penalty- 
based approach to augment the standard loss functions with addi-
tional physics-based terms. As in Raissi et al. (2019), this approach ex-
tends the standard loss function in Eq. [10] to include the mean-squared 
error (MSE) that is associated with the governing PDEs, as well as initial 
and boundary conditions as follows: 

L=MSE1 + MSE2 + MSE3, [14] 

\where MSE1 , MSE2 , and MSE3 are the MSEs associated with the 
standard DL, PDE, and boundary conditions, respectively. Note that 
Raissi et al. (2019) also presented a version of the equation that incor-
porated the loss associated with the PDE (MSE2 )only instead of both 
MSE2 and MSE3 .

Here, we point out that simply summing up the MSEs implicitly as-
sumes equal weights in this multi-objective optimization problem. 
Considering that each of the MSEs in this equation could vary in 
magnitude, there is no guarantee that all three MSEs will be minimized 
to the same degree. On the contrary, the largest of these three MSEs 
typically gets minimized the most. In this work, we propose using a 
weighted summation of the standard DL MSE (Eq. [10]) and the ther-
modynamics constraints discussed previously. Of the three thermody-
namics constraints, we only consider the interphase mass balance and 
component balance constraints because the equality of fugacity is 
computationally expensive. 

Generating training data from the iterative solution of the Rachford- 
Rice equation is analogical to the use of a numerical or analytical model 
to create the training data for standard PDE-based PINNs like in Raissi 
et al. (2019) and Haghighat and Juanes (2021). Similarly, we use the 
interphase mass balance and component balance constraints instead of 
the PDEs in these previous publications. This work aims to demonstrate 
the feasibility of incorporating physical constraints that do not have to 
be PDEs. 

The modified loss function used in this work is given as: 

L= λ1MSE1 + λ2MSE2 + λ3MSE3, [15]  

where these three MSEs are given as: 

MSE1 =
1
N
∑N

i=1

∑M

j=1

(
yi,j − ŷi,j

)2
, [16]  

MSE2 =
1
N
∑N

i=1

∑nc

j=1

(
xi,j(1 − Vi) + yi,jVi − zi,j

)2
, [17]  

MSE3 =
1
N

∑N

i=1

∑nc

j=1

(
xij − yij

)2
, [18]  

and λ1, λ2, and λ3 are the corresponding weights. Note that the inner 
summation in Eq. [16] is over the total number of variables M, whereas 
it is over the total number of components nc in Eqs. [17] and [18]. A 
comparison of the equations for MSE2 and MSE3 with the equations for 
the interphase mass balance and component balance constraints (Eqs. 
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[2] and [6]) indicates that these equations correspond to both con-
straints in the homogeneous form. In contrast, MSE1 is the data misfit, 
which is based on the difference between the model and the training 
data, as in Eq. [10]. To evaluate the significance of MSE2 and MSE3 
without one masking the effect of the other, we only run them in 
isolation in this work. This implies that we have two main scenar-
ios—one with a loss function that only involves MSE1 and MSE2, and 
another which involves MSE1 and MSE3. 

1.4.1. Model evaluation metrics 
We evaluate the effectiveness of the PINN model at honoring the 

physical constraints using the root mean squared error (RMSE). For the 
interphase mass balance constraint, we compute the RMSE as: 

RMSE2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑nc
j=1

{(
zi,j −

[
x̂i,j(1 − V̂i) + ŷi,j V̂

])2}

N

√
√
√
√
√

[19] 

Considering that the overall mole-fractions provided are guaranteed 
to sum up to one, the component balance constraint will consist of two 
different RMSEs—one for the liquid phase (RMSEL) and the other for the 
vapor phase (RMSEV). These two RMSEs are computed as: 

RMSEL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

((∑nc
j=1 x̂i,j

)
− 1
)2

N

√
√
√
√
√

[20]  

RMSEV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

((∑nc
j=1 ŷi,j

)
− 1
)2

N

√
√
√
√
√

[21] 

For simplicity, we combine these two RMSEs by adding them 
together to obtain the RMSE for the component balance constraint as 
follows: 

RMSE3 =RMSEL + RMSEV . [22]  

1.5. Implementation of the physics-informed neural networks 

This work focuses on developing a PINN regression model for pre-
dicting the phase compositions and vapor fraction. We implement the 
PINN models using the SciANN Python package presented in Haghighat 
and Juanes (2021). A fully connected feed-forward deep neural network 
is constructed with the loss function modified to account for the physical 
constraints. The inputs and outputs of the PINN model used in this work 
are shown in Fig. 2, which is a sketch of the neural network. In this 
figure, zi, xi, and yi, represent the overall, liquid-phase, and gas-phase 
mole fractions, whereas, “isLiquid” and “isGas” are dummy variables 

that indicate whether the fluid exists in the liquid, gas, or two-phase 
state. Note that the two-phase state is not provided to avoid the 
well-known “dummy-variable trap” (Suits, 1957). Table 2 summarizes 
the specification of the deep neural network. 

1.5.1. K-fold cross-validation 
Due to the stochastic nature of the random initial neural network 

weights and the stochastic gradient optimizers used to train the model, 
the predicted outputs typically change even if the same model is trained 
several times on the same input data. So, we perform seven-fold cross- 
validation, where seven DL models with the same parameters are trained 
and tested on different subsets of the training data. This allows us to 
quantify the model’s performance in terms of its mean and standard 
deviation, leading to better estimates of its performance on unseen data. 
In each of the seven folds, 6/7 of the training and validation data is used 
to train the model. In contrast, the remaining 1/7 of the data is used to 
validate the model’s performance. So, we obtain seven different per-
formance estimates from each of the specified DNN model parameters. 
These are used to generate the box plots presented in the next section. 
Additionally, the seven models generated with each combination of 
model parameters are saved and combined using an equal weighting 
scheme to form an ensemble model. This technique, which is known as 
model averaging or bootstrap aggregating (“bagging” for short), helps to 
reduce the generalization error (Breiman, 1996) and typically out-
performs the single best-performing model (Goodfellow et al., 2016). 

1.6. Discussion of results 

1.6.1. PINNs with interphase mass balance constraint 
This section compares the results from a PINN model to those from a 

standard DL model. The use of the weighted sum of MSEs allows us to 
obtain the results of a standard DL model by setting the values of λ2 and 

Fig. 2. Neural network sketch shows the hidden layers and input and output variables of the DNN and PNN models.  

Table 2 
Specification of the neural network.  

Dataset Training: 700,000 Testing: 150,000 Validation: 150,000 
Network Input layer has 6 neurons; 4 hidden layers have 128 

neurons each; output layer has 7 neurons 
Batch size 256 
Number of epochs 300 
Optimizer Adam 
Modified Loss function λ1L1 + λ2L2 + λ3L3  

Hidden layer activation 
function 

ReLU 

Output layer activation 
function 

Sigmoid 

Metric MSE  
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λ3 to zero because λ1 is set to a constant value of one in all cases. So, to 
include only the interphase mass balance constraint, we simplify Eq. 
[15] as follows: 

L=MSE1 + λ2MSE2 . [23] 

It is essential to determine the value of λ2 that minimizes the errors 
associated with the data misfit (MSE1) and the interphase mass balance 
constraint (MSE2). To this end, Fig. 3 presents a box plot of the RMSE of 
the interphase mass balance constraint and R2 value on the primary and 
secondary Y-axes, respectively. These values are plotted against weight 
λ2 on the X-axis to find the optimum value of λ2where the RMSE of the 
interphase mass balance constraint is minimized, and the R2 is still very 
high. The RMSE measures the degree to which the model honors the 
laws governing phase equilibrium, whereas the R2 quantifies the 
model’s overall accuracy. The weight (λ2) is set to values ranging be-
tween 0 and 10, with the first box at a weight of zero in Fig. 3 being 
essentially a standard DL model with no physics constraint. 

As mentioned in the previous section, the box plots in Fig. 3 are 
generated using the seven estimates of RMSE and R2 from the seven-fold 
cross-validation. Although we tried a computationally expensive multi- 
objective optimization of the weights, the approach of systematically 
increasing the weights while observing the changes in the RMSE and R2 

values yields valuable insights into the model performance at different 
λ2 values. From Fig. 3, we observe that the RMSE of the interphase mass 
balance error drops from 2.7% to 1.2% when the weight λ2 is increased 
from 0 to 2, after which the R2 value declines more appreciably. Finally, 
we conclude from this figure that the optimum weight to be used in the 
interphase mass balance constraint is ~1.73. This is because the RMSE 
only decreases slightly while the R2 value decreases significantly when 
λ2 is increased above 1.73. 

Table 3 presents a comparison between the PINN and DNN models 
using the R2 and RMSE of the data misfit and the two physics constraints. 
In this table, “PINN1” and “DNN1” refer to the model results with/ 
without the interphase mass balance constraint, whereas “PINN2” and 
“DNN2” refer to corresponding results with/without the component 
balance constraint. Additionally, we obtained the tabulated from the 
best single PINN and best single DNN models instead of the ensemble 
model results. This standard practice when benchmarking models helps 
avoid the natural effect of improved model performance due to model 
averaging (Goodfellow et al., 2016). 

Table 3 shows that the RMSEs for the two physical constraints are 
lower in the PINN models than in their corresponding DNN models. This 
indicates that the physics-based constraints included in the PINN models 
results in model predictions that honor these physical laws, whereas 
DNN models only minimize the empirical loss function. Although the R2 

and overall RMSE are the same in “DNN1” and “DNN2” because they 
refer to the same model, the RMSEs are different. This is because the 
physics RMSE in DNN1 refers to the interphase mass balance RMSE (Eq. 
[19]). 

Whereas that of DNN2 refers to the component balance RMSE (Eq. 
[22]). Despite the fact that the overall RMSE and R2 are approximately 
the same in the PINN1 and DNN1 models, the interphase mass balance 
RMSE for the PINN1 model is 55% less than that of the DNN1 model. So, 
we can conclude that the PINN model honors the interphase mass bal-
ance constraints at the selected λ2 value of 1.73. Additionally, this result 
and Eq. [19] clearly show that unlike the overall RMSE and R2 that 
simply compare model predictions to test data, the physics RMSE for 
PINN1 directly quantifies the degree to which the predicted phase 
compositions and vapor fraction honors the interphase mass balance. 

1.6.2. PINNs with component balance constraint 
Here, we discuss the results from training PINNs with a component 

balance constraint. In this case, we simplify the loss function in Eq. [15] 
as follows: 

L=MSE1 + λ3MSE3 . [24] 

Eqs. [23] and [24] implicitly show that the two physical constraints 
were incorporated and optimized in isolation. This is to keep the opti-
mization of these weights simple to interpret and implement. Fig. 4 
presents a box plot of the RMSE of the component balance error and R2 

of the model against λ3. It shows that the RMSE drops from 0.15% to 
0.02% while the R2 remains fairly constant as λ3 is increased from zero 
to 2.24. So, the optimum weight for the component balance constraint is 

Fig. 3. Box plots show how the model accuracy and physics constraint errors (indicated by the R2 and RMSE, respectively) vary with the weights applied to the 
interphase mass balance constraint. 

Table 3 
Comparison of PINN to DNN model.   

PINN1 DNN1 PINN2 DNN2 

Overall Model R2 0.9658 0.9663 0.9683 0.9663 
Overall RMSE 0.0356 0.0399 0.03887 0.0399 
Physics RMSE 0.0118 0.0265 0.00015 0.00126  
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~2.24. Table 3 shows that the component balance RMSE for PINN2 is 
88% less than that for DNN2. This indicates that the PINN model honors 
the component balance constraints at the selected λ3 value of 2.24. 
Unlike the overall model RMSE and R2, Eqs. [19] through [21] show 
clearly that the component balance and interphase mass balance RMSEs 
are not computed relative to the test data. They are entirely functions of 
the predicted data, making them excellent metrics to quantify the degree 
to which the predicted phase compositions and vapor fraction honor 
physics constraints and not just the degree to which they match the test 
data. 

Comparing the RMSEs in Fig. 3 to those in Fig. 4 and Table 3 shows 
that the component balance RMSEs are one order of magnitude lower 
than the interphase mass balance RMSEs. This could be attributed to the 
ability of standard DNN models to infer that the phase compositions 
should sum to one without implementing it into the loss function 
explicitly. In contrast, the interphase mass balance constraint is more 
complex because it is a linear combination of the predicted vapor frac-
tion, overall, and phase mole fractions. Additionally, the component 
balance error could be much smaller because the DNN models can learn 
the component balance constraint from the implicit component balance 
in the overall mole fractions in the training data. Therefore, the 
remainder of this paper focuses on PINNs with the interphase mass 
balance constraint only. 

The DNN and PINN models are used to predict the xi, yi, and V of the 
150,000 fluid mixtures in the test dataset. The predicted fluid mixtures 
are then ranked in percentiles based on each mixture’s interphase mass 
balance errors in the PINN model, which is approximately the same as 
the DNN model’s ranking. The overall composition of the fluid mixtures 
at the 99th, 75th, 50th, 25th, and 1st error percentiles are used to create 
the phase diagrams in Fig. 5. The other two curves in the pressure- 
temperature (P-T) phase diagrams are based on the same fluid mix-
tures but with different overall compositions. The “actual” overall 
composition is simply taken from the zi values for the corresponding 
fluid mixture in the test data to obtain the dotted red lines. However, for 
the DNN and PINN models, the overall mole fractions were computed 
from the predicted phase mole fractions using Eq. [2]. Table 4 shows the 
total and interphase mass balance errors associated with each fluid 
mixture at the outlined percentiles. The total error is the sum of the 
absolute difference between the predicted phase compositions and 

vapor fractions from the PINN and DNN models and their corresponding 
values in the test data. Similarly, the “physics 1 error” is the absolute 
value of “zi − Vyi − (1 − V)xi” from Eq. [2]. This table shows that the 
PINN model outperforms the DNN model at all percentiles. 

The P-T phase diagrams in Fig. 5(a) are based on model predictions 
of the overall mole fraction for a fluid mixture at pressure and temper-
ature conditions where the composition exists in the single-phase liquid 
state. Under such conditions, the estimated zi values exactly match the 
actual zi values because the xi’s are identical to the zi values, whereas yi 
and V are zeros. So, in Fig. 5(a), the DNN and PINN models also match 
the actual P-T phase diagram exactly. The remaining images in Fig. 5 
show the corresponding phase diagrams for two-phase fluid mixtures at 
the specified percentiles. Although these phase diagrams cover a wide 
range of temperature and pressure values, the input data used to create 
them correspond to a single point in the P-T phase diagram. So, it is 
unrealistic to expect a machine learning model trained to predict the 
fluid properties for a distinct fluid mixture at only one pressure and 
temperature to match the actual phase behavior over a wide pressure 
and temperature range over which it is not trained. 

The results in Fig. 5 show that the prediction of the phase diagram 
based on the PINN model outperforms the DNN model in all cases. The 
black vertical line highlights the isothermal temperature (of 176 ◦F) at 
which all the fluid compositions were specified. As expected, the devi-
ation of the models from the actual saturation pressure at this temper-
ature increases as the error percentile decreases. Although the R2 and 
RMSE for the models in Table 3 do not indicate a significant difference in 
the results, Table 4 and the phase diagrams for the predicted phase 
compositions show that incorporating physics with PINNs yields pre-
dictions that more accurately describe the phase behavior of composi-
tional fluid mixtures. This is because incorporating physics-based 
constraints via custom loss functions is known to act as a physics-based 
regularization that helps solve ill-posed problems and prevent over-
fitting (Kashinath et al., 2021). Finally, the DNN models show excellent 
performance metrics, but the predictions may not honor the thermo-
dynamics constraints of phase equilibrium, which are not imposed 
during the model training. PINNs address this limitation and yield better 
model predictions that honor the physical constraints of phase equilib-
rium. Additionally, our timing results show that the trained PINN 
models are 145 times faster than the standard iterative flash procedure. 

Fig. 4. Box plots show how the model accuracy and physics constraint errors (indicated by the R2 and RMSE, respectively) vary with the weights applied to the 
component balance constraint. 
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2. Conclusions 

This work presents the incorporation of thermodynamics constraints 
into deep learning models for two-phase flash calculations. It is achieved 

by modifying the standard loss function to include these physics con-
straints as a weighted sum of mean-squared errors. We performed a 
sensitivity study that showed the change in the overall R2 and RMSE 
with increasing weights to determine the optimum weights used in the 
custom loss function. We generated one million unique fluid mixtures 
from a space-filling mixture design to obtain the data needed in this 
work. These mixtures’ pressure, temperature, and overall composition 
were used to predict the flash output variables. Of the one million fluid 
mixtures, 150,000 were withheld for testing, whereas the remaining 
were partitioned between training and validation in a seven-fold cross- 
validation. 

The results show that incorporating thermodynamics constraints into 
PINNs yields model predictions with over a 55% reduction in the physics 
constraint errors (RMSE) when compared with DNNs. Although the 
RMSE of the physics constraints reduced significantly, the difference 
between the overall R2 value of the PINN and DNN models was 

Fig. 5. Phase envelopes for compositions at different percentiles indicate that the PINN model yields a better description of the phase behavior than the DNN model.  

Table 4 
Summary of the performance of the DNN and PINN models at specific 
percentiles.  

Percentile PINN Total 
error 

PINN Physics I 
error 

DNN Total 
error 

DNN Physics I 
error 

99 8.60E-05 2.00E-06 1.20E-04 7.00E-05 
75 1.33E-03 1.20E-05 3.91E-03 7.30E-04 
50 1.22E-02 2.16E-03 2.37E-02 2.17E-02 
25 7.37E-02 1.47E-02 1.35E-01 2.19E-02 
1 4.07E-01 1.34E-02 4.13E-01 2.83E-02  
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negligible (<0.05%). This indicates that using PINNs results in model 
predictions that honor physical constraints without reducing overall 
model accuracy. Finally, we presented phase diagrams that show that 
the PINN model significantly outperforms the DNN model in predicting 
compositional fluid behavior. 
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Nomenclature 

fLi fugacity of component i in the liquid phase 
fVi fugacity of component i in the vapor phase 
ki vapor-liquid equilibrium factor 
L loss function 
MSE mean square error, which is used as the loss function 
P pressure 
RMSE root mean square error, which is used as a metric 
R2 coefficient of determination, which is used as a metric 
T temperature 
V vapor fraction 
xi mole fraction of component, i in the liquid phase 
yi mole fraction of component, i in the gas phase 
zi overall mole fraction of component, i. 
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