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Summary

Most unconventional oil and gas reservoirs are known to have several natural fractures in different orientations, which are consistent
with the prevailing stresses when they were created. The accurate and efficient modeling of natural and hydraulic fractures presents a
significant computational challenge. In this work, we show the limitations of the embedded discrete-fracture model (EDFM) and present
the first 3D projection-based EDFM (pEDFM) algorithm and compositional simulation studies with realistic fracture networks in a
fully 3D space.

The simulation results from this work indicate that the pEDFM presented can model realistic fractured unconventional reservoirs
accurately and efficiently. To validate the model, we present some simplistic fracture cases that can be meshed and modeled easily
using explicit-fracture modeling in commercial-reservoir simulators. From the cases studied, we observe that using progressively finer
grids near the hydraulic-fracture surfaces helps to improve model accuracy because this allows us to capture the sharp pressure drops
expected near these fracture surfaces. The simulation results show that, unlike EDFM, the robust pEDFM algorithm presented here is
accurate even at the low fracture-conductivity values expected in many of these ubiquitous natural fractures.

In this paper, we present the first full 3D compositional modeling with pEDFM. We demonstrate that our model can accurately and
efficiently model multiply fractured horizontal wells in unconventional reservoirs, which have complex networks of thousands of frac-
tures at various orientations.

Introduction

Virtually all petroleum reservoirs are naturally fractured to some extent. Of these, unconventional oil and gas (UOG) reservoirs (also
commonly referred to as shale oil/gas reservoirs) and fractured carbonate reservoirs have proven to be particularly significant. The U.S.
Energy Information Administration (2019) shows that tight/shale gas reservoirs contribute approximately 75% of the total U.S. dry
natural-gas production, whereas tight/shale oil accounts for approximately 50% of the total oil production from the United States today.
The U.S. Energy Information Administration also predicts that the relative contribution of these UOG reservoirs to total U.S. oil and
gas production will increase over the next 30 years. Although this work will focus on the modeling of fractured UOG reservoirs, the
algorithm we propose can be used to model any fractured reservoir.

The simplest approach to model fractures explicitly involves representing each segment of a fracture with a gridblock. This brute-
force method is referred to as the explicit-fracture model. It requires the matrix cells to conform to the geometry and orientation of
every fracture in the simulation domain. Therefore, the mesh must be unstructured to model fractures with any arbitrary orientations
and geometry. It is computationally expensive because of the enormous number of gridblocks that will be required to model such a
system. Olorode et al. (2013) demonstrated using such an unstructured mesh to model hydraulically fractured shale gas wells explicitly.
For reservoirs that have dense and interconnected fractures with uniform distribution, orientation, and aperture, it is common to use
dual-continuum models, such as the dual-porosity and dual-permeability models (Warren and Root 1963). To account for the transient
release of fluids from the matrix into the fractures in tight rocks, Pruess and Narasimhan (1985) developed the multiple interacting con-
tinua model, which involves subgridding the matrix gridblocks. Zimmerman et al. (1993) reported that using the multiple interacting
continua model, we would need up to 10 submatrix cells to obtain accurate results over all time scales. To address this computational
challenge, Zimmerman et al. (1993) presented the use of a transient shape factor instead of the pseudosteady-state shape factor in the
standard dual-porosity model.

Although the dual-continuum model is typically used to model naturally fractured reservoirs today, it is limited in the sense that the
matrix and fractures are assumed to be continuous, uniformly distributed, well connected, and with constant fracture properties and
geometry (Norbeck et al. 2016). The marked variability in the production performance of different wells and fractures within the same
shale play indicates that these assumptions are usually not applicable in UOG reservoirs. UOG reservoirs typically have fractures at
multiple scales with different lengths, apertures, orientation, and conductivity. These heterogeneities in the fracture distribution and
properties could be linked to the marked differences in the amount of production obtained from different wells in the same reservoir.
Zoback and Kohli (2019) show that approximately 20% of UOG wells produce more than 80% of the total field production, and they
suggest that the most productive regions of the reservoir (referred to as sweet spots) could be interpreted as regions with well-connected
and conductive natural fracture networks. In addition, outcrop studies show that natural fractures exhibit significant variation in their
aperture, length, height, conductivity, and spacing (Gillespie et al. 1993; Odling 1997; Odling et al. 1999). These variations in the frac-
ture properties infer that using dual-continuum models could be questionable in these naturally fractured reservoirs. Another shortcom-
ing of the multicontinuum models is that it is difficult to determine the shape factor for real reservoirs with capillarity and gravity
effects, as well as multiple hydrocarbon components and fluid phases (Geiger et al. 2013).

The discrete-fracture model (DFM) was developed to account for the effect of each individual fracture on fluid flow and transport in
these fractured reservoirs. The DFM models the fractures at a dimension of n – 1, where n is the number of dimensions of the model
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(Kim and Deo 2000; Karimi-Fard and Firoozabadi 2001). This makes DFM faster than an explicit-fracture simulation, where very
small n-dimensional gridblocks are used to represent each fracture segment in the domain. However, the DFM requires the grids in the
simulation domain to conform to the geometry of all the fractures in the domain, making it impractical for the 3D modeling of UOG
reservoirs with thousands of natural and hydraulic fractures (Moinfar 2013). To combine the advantage of the detailed fracture descrip-
tion from the DFM with the computational efficiency of the dual-continuum model, Gong (2007) developed the multiple subregion
method. This method basically upscales a high-resolution DFM into an effective coarse-scale continuum model. Other authors (Gong
et al. 2017; Li and Voskov 2018) have also demonstrated using a multilevel DFM, which models the large-scale fractures with the
DFM and upscales the small-scale fractures using flow-based upscaling.

The EDFM was developed by Li and Lee (2008) to improve the computational efficiency in the modeling of natural fractures. It is
based on a hierarchical approach (Lee et al. 1999, 2001), where very small-scale fractures are homogenized by changing the effective
flow properties (such as permeability and transmissibility) of the matrix cells. In the EDFM, the matrix and large-scale fractures are dis-
cretized independently. Therefore, we can model the matrix cells with structured grids because they do not need to conform to the
geometry and orientation of the fractures. To facilitate the practical use of this method in commercial simulators, Fumagalli et al.
(2016) and Xu et al. (2019) extended EDFM to work with corner-point grids. EDFM has also been used to model UOG reservoirs,
which are known to contain multiscale pores and fractures. Some authors (Moinfar et al. 2013; Li et al. 2017) have used a combination
of EDFM and dual-continuum methods to model shale oil/gas reservoirs, whereas others (Diaz Campos et al. 2009; Devegowda et al.
2012; Zhang et al. 2017; Yu et al. 2019) have accounted for the confinement effects expected in these shale plays.

The major limitation of the EDFM is its inability to model fractures with low fracture conductivities. This led to the development of
the pEDFM in T� ene et al. (2017) and T� ene (2018). The 2D pEDFM algorithm presented in T� ene et al. (2017) and Jiang and Younis
(2017) is limited to 2D or extruded 2D (2.5D) systems, and it implicitly assumes that the fractures will be vertical and fully penetrating
from the top to the bottom of the reservoir. This rarely happens because the orientation of the natural fractures is controlled by the
stress states at the time (in geologic history) when these fractures were created (Shafiei et al. 2018). Consequently, it is normal to have
fractures with different orientations in space. In the recent paper by Rao et al. (2020), the authors stated that the 2D approach presented
in Jiang and Younis (2017) will be complicated and impractical for 3D cases. Therefore, they proposed a simpler 3D algorithm, referred
to as the microtranslation method. This method basically translates the fracture centroid in the direction of the normal vector, which
makes either an acute or right angle with the vector from the cell centroid to the fracture centroid.

In this paper, we propose a robust 3D pEDFM that demonstrates the practicality of the extension of the 2D approach that was pre-
sented in Jiang and Younis (2017). We believe that this work provides significant improvement in 3D pEDF modeling because it pre-
vents the unphysical configurations described in Figs. 13 and 14 of Jiang and Younis (2017). In addition, we demonstrate the first fully
3D pEDFM simulation of UOG reservoirs with more than 1,000 fractures in any arbitrary orientation. Some of the other advantages of
using a 3D pEDFM include the following:

• Ability to account for each individual fracture’s properties.
• Ability to perform uncertainty analyses on the fracture properties, distribution, and so on.
• Ability to perform robust optimization for infill well location, well spacing, cluster spacing, and so on, while accounting for the

uncertainty in the location, distribution, and properties of the natural fractures.
• Ability to incorporate data from microseismic, distributed temperature sensing, distributed acoustic sensing, image logs, core

samples, flow tests, and so on.
• In combination with a compositional reservoir-simulation model (which is discussed in the next section), 3D pEDFM provides the

ability to efficiently model enhanced/improved oil recovery in unconventional oil reservoirs.
There is no technology available to determine the exact orientation and location of all the fractures in the subsurface today. There-

fore, our goal is not to model the exact system of natural fractures in the subsurface but to quantify the uncertainty introduced by these
fractures with arbitrary orientation.

Governing Equations for Compositional Reservoir Simulation

Cao (2002) and Voskov and Tchelepi (2012) discuss some of the mathematical formulations for compositional reservoir simulation.
These include the molar variables (Fussell and Fussell 1979; Young and Stephenson 1983; Chien et al. 1985), volume-balance (Acs
et al. 1985), overall composition variables (Collins et al. 1992; Voskov and Tchelepi 2012), and natural variables (Coats 1980) formula-
tions. Møyner and Tchelepi (2017) provide details on the governing equations, discretization, and solution procedure for compositional
simulation using the overall composition approach. As shown in this section, we also use the overall composition approach. We first
provide a summary of these procedures in the context of a conventional reservoir simulator without a discrete fracture model. The next
two sections will then extend these procedures to enable the modeling of fractured reservoirs using EDFM and pEDFM.

The mass-conservation equation for each hydrocarbon component i in the liquid (oil) and vapor (gas) phases can be expressed as

@

@t
½/ðqlSlX

i
l þ qvSvXi

gÞ� þ r � ðqlX
i
l~vl þ qvXi

g~vvÞ � ðqlX
i
lql þ qvXi

gqvÞ=V ¼ 0: ð1Þ

In a similar form, we can write the governing equation for the conservation of water in the aqueous phase as:

@

@t
ð/qwSwÞ þ r � ðqw~vwÞ � qwqw=V ¼ 0: ð2Þ

Here, / represents porosity, and qa; Sa, and qa represent the mass density, saturation, and volumetric withdrawal/injection rate of
phase a, respectively. The subscripts l and v refer to the liquid and vapor hydrocarbon phases, respectively. Therefore, the mass frac-
tions of component i in the liquid and vapor phases are Xi

l and Xi
g, respectively. The symbols, ~vl and ~vv represent the Darcy velocity for

the liquid and vapor hydrocarbon phases, respectively. In these conservation equations, we assumed that there is no mass transfer
between the organic phases (oil and gas) and the aqueous (water) phase. We also divided the last term on the right-hand side of Eqs. 1
and 2 by bulk volume V to ensure that the equation is dimensionally consistent.

The phase velocities in Eqs. 1 and 2 can be obtained from the Darcy equation as follows:

~va ¼ �K
kaðSÞ
la
ðrpa � qagrzÞ ¼ �Kkaðrpa � qagrzÞ: ð3Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The phase mobility (ka) is defined as the ratio of the relative permeability of phase a to its phase viscosity la, whereas K is the abso-
lute matrix permeability. The capillary pressure definitions, as well as saturation and composition constraints (i.e., saturations and com-
positions sum to 1) are also applied to the governing equations. In the overall composition approach, the primary variables are pressure,
overall mole fraction of each component, and water saturation (p, z1,…; zn�1, and Sw), respectively. To obtain Xi

l and Xi
g, we solve the

flash equations, which ensure that each component in the liquid phase is in chemical equilibrium with the corresponding component in
the vapor phase, the sum of the number of moles of each component in the liquid and gas phases is equal to its corresponding overall
composition, and that all mole fractions sum to 1. These three conditions are realized when the following equations are solved:

f i
gðp;T; y1;…; ynÞ � f i

l ðp; T; x1;…; xnÞ ¼ 0; for i 2 1;…; nc; ð4Þ

zi � Lxi � ð1� LÞyi ¼ 0; for i 2 1;…; nc; ð5Þ
Xnc

i¼1

xi � yi ¼ 0: ð6Þ

In these equations, f i
g and f i

l are the fugacities of each component in the gas and liquid phases, respectively. The solution to these
flash equations will give the liquid fraction (L), as well as the mole fractions of each component in the gas and liquid phases (yi and xi).
To compute the fugacities and phase compressibility factors (Zg and Zl), we use the Peng-Robinson equation of state (Peng and
Robinson 1976). Firoozabadi (2015) provides more details on the equation of state, flash procedure, and the equations to compute the
fugacities and compressibility factors. The results obtained from the solution of these flash equations are then used to compute the
phase saturations, phase densities, and mass fractions, as discussed in Møyner and Tchelepi (2017).

To solve the continuous equations (Eqs. 1 and 2) numerically, we first a perform temporal discretization using the backward Euler
scheme to obtain

1

Dt
½ð/qlSlX

i
l þ /qvSvXi

gÞ
nþ1 � ð/qlSlX

i
l þ /qvSvXi

gÞ
n� þ r � ðqlX

i
l~vl þ qvXi

g~vvÞ � ðqlX
i
lql þ qvXi

gqvÞ=V ¼ Ri; ð7Þ

1

Dt
½ð/qwSwÞnþ1 � ð/qwSwÞn� þ r � ðqw~vwÞ � qwqw=V ¼ Rw: ð8Þ

In these equations, nþ 1 represents the current timestep, and n represents the previous timestep. All other terms without these super-
scripts are evaluated at the current timestep. We discretize the flux terms in space using the finite-volume method with two-point flux
approximation. This method involves integrating Eqs. 7 and 8 over a control volume, as discussed in the MATLABVR (The MathWorks,
Inc., Natick, Massachusetts, USA) reservoir simulation book (Lie 2019). Section 4.4 in this book explains how the transmissibility (T)
and flux terms (in the second term of both equations) are computed using the discrete divergence and gradient operators. In terms of
these discrete operators, the discretized form of the equation can be written as

V

Dt
½ð/qlSlX

i
l þ /qvSvXi

gÞ
nþ1 � ð/qlSlX

i
l þ /qvSvXi

gÞ
n� þ divðqlX

i
l~vl þ qvXi

g~vvÞnþ1 � ðqlX
i
lql þ qvXi

gqvÞnþ1=V ¼ Rnþ1
i ; ð9Þ

V

Dt
½ð/qwSwÞnþ1 � ð/qwSwÞn� þ divðqw~vwÞnþ1 � ðqwqwÞnþ1=V ¼ Rnþ1

w ; ð10Þ

and

~va ¼ �Tikk
nþ1
a ½gradðpnþ1

a Þ � qnþ1
a ggradðzÞ�; ð11Þ

where

Tik ¼ ½T�1
i;k þ T�1

k;i �
�1 ð12Þ

and

Ti;k ¼ Ai;kKi
~ci;k � ~ni;k

j~ci;kj2
: ð13Þ

The div and grad functions in Eqs. 9 through 11 are the discrete divergence and gradient operators that are implemented as functions in
Lie (2019). The cell volume and face areas are represented as V and Ai,k, respectively. The symbol, ~ni;k is the unit normal that points
from the centroid of cell i to the face between cells i and k, and ~ci;k is the vector from the cell centroid to the face centroid. Tik is face
transmissibility, and Ti,k is the contribution of a cell to the face transmissibility. It is referred to as a half-transmissibility because a pair
of cells contributes to the transmissibility of each face in the two-point flux approximation scheme. Unlike the conventional definition
of transmissibility in structured grids (Aziz and Settari 1979), Eqs. 12 and 13 apply to both structured and unstructured grids when the
two-point flux approximation scheme is used. It is worth noting that the temporal and spatial discretization schemes are numerical
approximations to the governing partial differential equations and lead to a mass imbalance, which is referred to as the residual (R).
The Newton-Raphson method involves applying the Taylor expansion to the residual at the current timestep and current Newtonian iter-
ation to obtain

@Rkþ1

@X
DX ¼ �Rkþ1ðXÞ: ð14Þ

The partial derivative of the residuals with respect to each of the primary variables
@Rkþ1

@X

� �
is referred to as the Jacobian matrix.

This work uses automatic differentiation to compute the Jacobian matrix, using the MATLAB Reservoir Simulation Toolkit (MRST)
by Lie (2019). The compositional module in MRST uses automatic differentiation to compute the derivatives of the flash equations
with respect to the primary variables, as explained in Møyner and Tchelepi (2017). Aziz and Settari (1979) and Lie (2019) provide
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more details on the application of the Newton-Raphson iteration scheme to solve the nonlinear system of equations that govern flow in
petroleum reservoirs. The resulting linearized system of equations can be solved with an appropriate linear solver to obtain the changes
in the primary variables (DX) at each Newtonian iteration. In this work, we use a bi-conjugate gradient-stabilized linear solver, with an
algebraic multi-grid preconditioner. The changes in the primary variables are then added to the previous value of the primary variable
(X), and the process is repeated until the system converges. We then move on to the next timestep and repeat this Newton-Raphson
iterative procedure.

Compositional Simulation of Fractured Reservoirs with EDFM

EDFM uses the concept of non-neighboring connections (NNCs) to couple the flow of fluids in a fracture cell to that of its host matrix
cell. The implementation is such that we simply add qnnc

i to the semidiscrete form of the governing equation (Eq. 7) as follows:

1

Dt
½ð/qlSlX

i
l þ /qvSvXi

gÞ
nþ1 � ð/qlSlX

i
l þ /qvSvXi

gÞ
n� þ r � ðqlX

i
l~vl þ qvXi

g~vvÞ � ðqlX
i
lql þ qvXi

gqvÞ=V þ qnnc
i =V ¼ Ri: ð15Þ

Here, qnnc
i is the mass rate of component i, which is exchanged through the NNC (in units of mass per time). It is defined as

qnnc
i ¼

XNnnc

m¼1

Annc
m

Xnp

a¼1

knnc
m kra

la
qaXi

a
ðpa � qagzÞ � ðpa � qagzÞnnc

m

dnnc
m

� �
: ð16Þ

In this equation, subscript m is an index from 1 through Nnnc, which is the total number of NNCs for each cell. The terms ðpa �
qagzÞ and ðpa � qagzÞnnc

are the flow potentials of a cell and its non-neighboring cell, respectively. The symbols Annc, knnc, and dnnc rep-
resent the area, permeability, and distance of the NNCs, respectively. These parameters are used to determine the transmissibility factor
between any pair of cells that interact through a NNC. The transmissibility factor for an NNC is given as

Tnnc ¼ knncAnnc

dnnc
: ð17Þ

The expressions for Annc, knnc, and dnnc vary depending on the type of NNC under consideration. Given that the only difference
between Eqs. 7 and 15 is the addition of the qnnc

i =V, Eq. 15 will be discretized as discussed in the previous section (Eqs. 9 through 14).
Moinfar (2013) provides more details on the equations presented in this section, as well as the expressions for the three types of NNCs
identified in EDFM. In the next four subsections, we outline all four possible types of connections between cells in EDFM. This allows
us to clearly explain the additional NNCs that are needed to implement our 3D pEDFM algorithm.

Matrix/Matrix Connectivity. This refers to the standard connectivity that is obtained by virtue of a matrix cell being a neighbor of
another matrix cell. Therefore, it is not an NNC (in a strict sense), and we do not need expressions for Annc, knnc, dnnc, and Tnnc in this case.

Matrix/Fracture Connectivity. This refers to the NNC between a fracture cell and its host matrix cell. The first image in Fig. 1 illus-
trates this as the interaction between the blue fracture and the peach matrix cell in which it is located. For this case, the parameters Annc,
knnc, and dnnc in Eq. 17 are defined as

Annc ¼ 2Af ; ð18Þ

knnc ¼ kmkf

km þ kf
; ð19Þ

dnnc ¼

ð
v

xndv

V
: ð20Þ

Here, Af is the fracture area, and km and kf are the matrix and fracture permeabilities, respectively. The symbols dv, xn, and v repre-
sent the volume element, normal distance of the element from the fracture, and cell volume, respectively.
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Fig. 1—Types of NNCs in EDFM. Image is courtesy of Moinfar (2013).
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Fracture/Fracture Connectivity. This refers to the connection between two cells of an individual fracture plane. Although it is
referred to as a fracture segment NNC in the third image in Fig. 1, it could be seen as a standard connection that can be obtained by
virtue of a fracture cell being a neighbor to another fracture cell within the same fracture plane. Like the matrix/matrix connection, this
is obtained by default in a reservoir simulator, and there is no need to define any NNC parameters in this case.

Intersecting Fracture Connectivity. This refers to the NNC that results from the intersection of a fracture cell with another fracture
cell from a different fracture plane. As illustrated in the second image in Fig. 1, the intersection between two fracture cells from differ-
ent fracture sets gives the solid black line shown. For this case, the NNC transmissibility is defined as

Tnnc ¼ T1T2

T1 þ T2

; ð21Þ

where T1 and T2 are the half transmissibilities of the two intersecting fractures

T1 ¼
kf 1x1Lint

df 1

; ð22Þ

and

T2 ¼
kf 2xf 2Lint

df 2

: ð23Þ

Here, Lint represents the length of the line of intersection between two fracture cells within a matrix cell. The symbols xf and kf repre-
sent the fracture aperture and fracture permeability, respectively, and df1 and df2 represent the distances from the centroids of fracture
cells 1 and 2, respectively, to the intersection line.

Introduction of the pEDFM

T� ene et al. (2017) presented results that showed that EDFM is not accurate when the permeability of a fracture is less than that of the
matrix. They also showed that in cases where fractures lie exactly at the interface between two matrix cells, EDFM basically ignores
the properties of the fracture in between these matrix cells. They developed a 2D pEDFM to fix these limitations of the EDFM. As will
be shown in the next section, pEDFM extends the EDFM approach by modifying the matrix/matrix and fracture/matrix transmissibil-
ities in the neighborhood of the fractures. The major challenge in implementing this algorithm is the determination of the matrix cells
whose transmissibilities need to be modified. The matrix cell that hosts the fracture cell is referred to as a host matrix cell or host cell,
and the neighboring matrix cells into which the fracture cell will be projected are referred to as the projection matrix cells or projection
cells. For the rare case in which fractures lie exactly at the interfaces between two pairs of matrix cells, pEDFM simplifies into the
DFM, as discussed in T� ene et al. (2017). When fracture cells do not lie at matrix cell interfaces, they cut into the interior of the matrix
cell(s) and are referred to as interior fracture cells.

Although T� ene et al. (2017) provided the mathematical equations to compute the matrix/matrix and fracture/matrix transmissibilities
in the 2D pEDFM, the authors stated that the development of a generic algorithm to determine the projection cells is beyond the scope
of their paper. Jiang and Younis (2017) presented this algorithm for a 2D system, but an extension of this algorithm to a fully 3D
system is not trivial. This paper presents a robust 3D pEDFM algorithm, which allows us to model realistic fractures that could have
any arbitrary orientation in a structured 3D Cartesian grid. It is worth mentioning that the pEDFM model proposed could also be applied
for improved speed and accuracy in the modeling of UOG reservoirs that have no natural fractures but with hundreds of hydraulic frac-
tures. Raterman et al. (2018) presents an actual observation of limited natural fracturing but up to 966 hydraulic fractures in a region
within the Eagle Ford Shale. The modeling of these many hydraulic fractures using the DFM or an explicit-fracture model would be
computationally prohibitive, but our 3D pEDFM model will provide the necessary computational speed and flexibility to model this
UOG reservoir with hydraulic fractures striking at N060�E and dipping at 75 to 80�SE (with a variation of up to 620� in both the strike
and dip).

Robust Algorithm for 3D pEDFM

Fig. 2 shows the algorithm to find the projection matrix cells for 3D Cartesian grids with fractures in any arbitrary orientation. Although
our algorithm could be adapted for simple corner-point grids with six faces, we leave this (as well as more complicated corner-point
and unstructured grids) to a future study. The four cases discussed in this section cover all possible orientations of a fracture in a struc-
tured hexahedral gridblock. However, to simplify our discussion, we use the simplest examples in each of these four cases. The algo-
rithm starts with a loop through all interior fracture cells. Within this loop, we compute the distance between the fracture centroid and
the centroids of all the six faces of the host matrix cell. Because this is a 3D algorithm, there will be a pair of faces in each of the three
possible (X-, Y-, and Z-) directions. The procedure to determine the projection matrix cell involves finding which of the pairs of the host
matrix faces is the projection face for each of the three directions. This is because a projection face will always separate a host matrix
cell from a projection cell.

Case 0: No Equidistant Pair of Faces. Fig. 3 presents a case where a fracture cell is closer to one of the pair of faces in all three
directions. In this case, the closer face is selected for each pair of faces, and that gives us the three projection cells for the X-, Y-, and
Z-directions. The left image in the figure shows the 3D view of a case with no equidistant pair of faces, and the middle and right images
show the corresponding front and top views, respectively. It is easy to see that the fracture is closer to the right, back, and bottom faces
in the X-, Y-, and Z-directions, respectively. In this case in which there is no equidistant pair of faces in any direction, we simply com-
pute the projection matrix areas and transmissibilities and then proceed to the next interior fracture cell.

If there is at least one equidistant pair of faces in any of the three directions, we first compute the area and transmissibility for the
faces we can select on the basis of the nearness to the fracture centroid and then proceed to the steps shown in the lower half of Fig. 2.
This corresponds to the remaining three cases discussed in the next three subsections. For the scenario with one equidistant pair of
faces, we would have selected two faces based on proximity to the fracture centroid. Similarly, one face would have been selected in
the case of two equidistant pairs of faces.
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Case 1: One Equidistant Pair of Faces. The left image in Fig. 4 shows the 3D view of a case with one equidistant pair of faces, and
the middle and right images show its corresponding front and top views, respectively. It is easy to see that the fracture centroid is equi-
distant from both the front and back faces but closer to the right and bottom faces in the X- and Z-directions, respectively. The algorithm
we use in this case is such that we find the coordinates of the two nodes that are common to the two faces, which would have been
selected from the previous steps in the algorithm. Next, we find the distance between each of these two nodes and the plane of the frac-
ture cell. The node with the larger distance is selected, and this node will be one of the four nodes that bound the third face to be
selected. This approach, like its 2D corollary (Jiang and Younis 2017), prevents the selection of faces that intersect in the path of the
fracture plane. The algorithm then continues with the computation of the area and transmissibility for this newly (third) selected face,
before proceeding to the next interior fracture cell.

Start

Pick first/next interior fraction cell

Compute distance between fracture
and all six cell faces

For directions with nonequidistant
pair of faces, select the face closer

to the fracture

Compute area and transmissibility for
all selected faces

Any equidistant
pair of faces?

Number of equi-
distant pairs of faces

Find the two nodes common
to the two faces selected

Select the node that is
farther from the fracture
plane out of these two

The face that contains this
selected node is the

projected face

Find other two projection faces using
selected direction and index (from
the two steps above) in Table 1.

Compute area and transmissibility
for projected matrix/fracture NNCs

that have not been computed

Processed all
fractures?

End

Find other two projection faces using
selected direction and index (from
the two steps above) in Table 1.

Yes

No

Find the index of the farthest node
(of the selected face) from the

fracture plane

Find the index of the farthest node
(of the selected face) from the

fracture plane

Find the direction of the selected
face

Randomly select one face (e.g., left
face). This gives face direction

Yes

No

1 3

2

Compare fracture distances of pair
of faces in each of X-, Y-, and Z-directions

Fig. 2—Proposed algorithm automatically determines the three neighboring cells, whose transmissibilities and connection areas
need to be modified in 3D pEDFM.
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Case 2: Two Equidistant Pairs of Faces. The left image in Fig. 5 shows the 3D view of a case with two equidistant pairs of faces,
and the middle and right images show its corresponding front and top views, respectively. It is easy to see that the fracture centroid
is equidistant from the front and back faces and also equidistant from the top and bottom faces, but closer to the right face in the
X-direction. In this case, where there are two pairs of equidistant host cells out of the three directions, we first find the direction of the
only selected face. We then find which of the four nodes of this face is farthest from the plane of the fracture. The combination of the
index of the farthest node (out of the four nodes bounding the selected face) and the direction of the previously selected face is used to
select the remaining two faces such that they do not intersect in the path of the fracture plane. The selection of these two faces based on
the selected face direction and the index of the furthest node can be simplified using Table 1. This table is based on using the coordinate
system shown in Fig. 6, as well as the node-ordering scheme in Figs. 7a to 7c for the left/right, front/back, and top/bottom faces,
respectively. Also, for each cell, the faces are ordered from face 1 to 6, representing the left, right, front, back, top, and bottom faces,
respectively. The algorithm then continues with the computation of the area and transmissibility for these two newly (second and third)
selected faces, before proceeding to the next interior fracture cell.

Case 3: Three Equidistant Pairs of Faces. The left image in Fig. 8 shows the 3D view of a case where all three pairs of host cell
faces are equidistant from the fracture cell centroid, and the middle and right images show its corresponding front and top views,
respectively. In this case, we randomly select one out of the cell faces. This gives the face direction for the first out of three projection
cell surfaces. We then compute the area and transmissibility for this selected projection face and find the index of the farthest node (of
the selected face) from the fracture plane. As in Case 2, the combination of the index of the farthest node (out of the four nodes bound-
ing the selected face) and the direction of the previously selected face is used to select the remaining two faces, such that they do not
intersect in the path of the fracture plane. We again use Table 1 as in the previous case. The algorithm then continues with the computa-
tion of the area and transmissibility for these two newly (second and third) selected faces, before proceeding to the next interior fracture
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Fig. 3—In this case, where there is no pair of faces that is equidistant from the fracture centroid in any direction, the nearer faces
will be selected in all three directions. For the case shown here, the fracture is closer to the right, back, and bottom faces in the
X-, Y-, and Z-directions, respectively. These will be the three faces selected in the algorithm.
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Fig. 4—In this case, we select the right and bottom faces in the X- and Z-directions, respectively. We cannot select either the front
or back faces because they are equidistant from the fracture centroid. In such cases, where there is only one equidistant pair of
faces, the third face will be selected based on the common nodes of the selected faces. The node with the maximum distance from
the fracture plane will be used in the face selection.

Node Index Face 1 Face 2 Face 1 Face 2 Face 1 Face 2 

1 Front Bottom Left Bottom Left Front 

2 Back Bottom Left Top Right Front 

3 Back Top Right Top Right Back 

4 Front Top Right Bottom Left Back 

Table 1—Selection of remaining two faces based on a combination of the node index and the direction

of the only selected face.
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cell. Although Figs. 3 through 5 and 7 only show rectangular projections of the fracture on the faces, the algorithm presented is robust
enough to handle fractures with any arbitrary orientations, where the projected area could be any convex and coplanar polygon. We
later demonstrate this using a Bakken shale oil simulation case that has 1,000 fractures in any arbitrary orientation.

NumEquiDist = 3
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Z

Fig. 6—Cell faces are numbered from 1 to 6 in the following order: left (1), right (2), front (3), back (4), top (5), and bottom (6). The
direction of the X-, Y-, and Z-axes is also given.
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Fig. 7—Node ordering scheme: (a) left/right, (b) front/back, and (c) top/bottom faces.
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Fig. 8—In this case, where all the three pairs of host-cell faces are equidistant from the fracture, we arbitrarily select one face in
any direction and then revert to the algorithm for Case 2.
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Fig. 5—In this case, we are only able to select the right face based on proximity to the fracture centroid in the X direction. In such
cases, where there are two equidistant pairs of faces, one of the four nodes of the selected face will be used to select the remaining
two faces.
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The modifications needed to extend an EDFM into a pEDFM involves first determining the projection cells, and then computing the
transmissibilities for the two distinct groups of NNCs that are absent in the EDFM algorithm. These two pEDFM NNCs are discussed
in the next two subsections.

Projection Matrix/Fracture Transmissibility. This refers to the NNC transmissibility between a projection matrix cell and a fracture
cell. For convenience, it is abbreviated as the pM-F transmissibility. T� ene et al. (2017) gives the expression for this transmissibility as

Tnnc
pM�F ¼

Aif?~x knnc
pM�F

dnnc
pM�F

; ð24Þ

where

knnc
pM�F ¼

kpMkf

kpM þ kf
: ð25Þ

Here, Aif?~x is the area of the fracture projections along each dimension,~x represents the X-, Y-, and Z-coordinates, and dnnc
pM�F is the dis-

tance between the fracture centroid and the centroid of the projection cell.

Projection Matrix/Matrix Transmissibility. This refers to the NNC transmissibility between the host matrix cells and their corre-
sponding projection matrix cells (pM-M transmissibilities). The expression for this transmissibility is given as

Tnnc
pM�M ¼ k

Aii � Aif?x

D~xe
: ð26Þ

Here, D~xe refers to the gridblock sizes in each spatial direction. To facilitate the implementation of this transmissibility calculation
in code, we can take advantage of the matrix/matrix transmissibilities already computed in standard reservoir simulation by reformulat-
ing the equation as

Tnnc
pM�M ¼ TM�M

Aii � Aif?x

Aii
: ð27Þ

Here, TM-M is the standard matrix/matrix transmissibility that can be written as

TM�M ¼ k
Aii

D~xe
: ð28Þ

The interested reader can confirm that Eq. 27 can be obtained from a combination of Eqs. 26 and 28. The fractional term in Eq. 27 is
then implemented as a transmissibility multiplier.

When multiple fracture segments are colocated within a host matrix cell, the total projected area is computed as a union of the pro-
jection areas for each of the fracture segments. This is expressed mathematically as

Ap
ij ¼ �A

p
i [ �A

p
j : ð29Þ

Here, �A
p
i and �A

p
j are the projection areas of fracture segments i and j, respectively (in one direction), and Ap

ij is the total projection
area in the same direction. Jiang and Younis (2017) provides more details on this case with multiple fractures within a host matrix cell.

Validation of the 3D pEDFM

In this section, we will present two simple validation cases. The first case will validate our 3D pEDFM against published 2D pEDFM
results, whereas the second case is a compositional case that will validate our 3D pEDFM against high-resolution explicit fracture
model results from both the MRST (Lie 2019) and a commercial compositional simulator. All the pEDFM equations and algorithms
described in this paper were implemented as an extension to the existing modules available in the MRST.

Validation against Published Results. Hajibeygi et al. (2011) provide a classic test case that can be used to compare our pEDFM sim-
ulation results with the corresponding results from EDFM and a high-resolution explicit-fracture model. It basically involves modeling
single-phase flow of a slightly compressible fluid across a square domain with two sealing fractures. These fractures intersect at 90� in
the middle of the reservoir domain, as shown in Fig. 9. The flow from the left- to the right-hand side of the domain is caused by setting
the pressure to a higher value on the left-hand side of the domain.

We used a 27� 27� 3 Cartesian grid with a homogeneous permeability of 1 darcy and a porosity of 0.3 everywhere in the reservoir.
Although this case is a 2.5D problem (because the 2D top view of the grid is basically extruded down three layers and the two fractures
are fully vertical), the next two sections will show other cases with fractures that can have any arbitrary orientation in 3D space. To val-
idate the accuracy of our pEDFM code in modeling fractures with both low and high permeability values, we run two cases: one with a
fracture permeability of 10 nd and another with a permeability of 1,000 darcy.

To drive the flow of water from the west to the east of the domain, we specify a Dirichlet boundary condition with a fixed pressure
of 10 bars on the west boundary and a Dirichlet boundary condition with a fixed pressure of 0 bars on the east boundary. We ran the
simulation for a period of 60 days, and the simulation results are shown in Fig. 10. The image on the left shows the Dirichlet boundary
conditions in red, and the two intersecting fractures are shown in blue. The second image gives the pressure profile.

To obtain results similar to those in Figs. 3 and 4 of T� ene et al. (2017), we also provide a high-resolution explicit-fracture solution
for reference. Instead of the 27� 27� 3 Cartesian grid used in the EDFM and pEDFM cases, this reference solution uses a
225� 225� 3 Cartesian grid. All the other parameters of the high-resolution explicit-fracture model are identical with those from the
EDFM and pEDFM cases. Fig. 11 presents the pressure profiles for the reference, pEDFM, and EDFM cases with the fractures acting
as flow barriers (fracture permeability is 10 nd). The results are similar to the published results in T� ene et al. (2017). Observe that the
pEDFM results match the reference solution, whereas EDFM does not. The EDFM pressure profiles seem to completely ignore the pres-
ence of these two intersecting flow barriers.
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In addition, Fig. 12 presents the simulation results for the case where the two intersecting fractures are highly conductive (fracture
permeability is set to 1,000 darcy). In this case, both EDFM and pEDFM match the high-resolution results.

Fig. 13 provides a quantitative comparison of both the EDFM and pEDFM simulations to the reference solutions obtained from the
high-resolution explicit-fracture simulation model. The results shown in this figure were obtained by extracting the pressure in the
middle cells (in the J- or Y-direction) running from the west to the east of the reservoir-simulation domain. The results from Figs. 11
through 13 are consistent with the observations in the literature that EDFM seems to be accurate at high fracture conductivities but inac-
curate at low fracture conductivities. Conversely, pEDFM seems accurate at both low and high fracture conductivities.
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Fig. 9—This sketch illustrates the plus-shaped intersection of two fractures in the middle of the 2D domain. The image is courtesy
of Hajibeygi et al. (2011).
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Fig. 11—At the low fracture-conductivity values in this model, EDFM is unable to capture the pressure variation near the flow bar-
rier, but pEDFM is able to capture the sharp pressure jump present in the high-resolution reference solution.
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Considering that the natural fractures in UOG reservoirs were generated over several different geological periods of time, some are
active at the stress state of the rock today, whereas others are not. In addition, some of the older natural fractures could be sealed with
cementing materials and act as sealing fractures/faults. The pEDFM code developed as part of this work provides the computational
speed and accuracy required to model natural fractures/faults with high or low fracture conductivities and in any arbitrary orientation
in 3D.

Validation against a Commercial Compositional Simulator. In this section, we present simulation results that validate our 3D
pEDFM model against explicit-fracture simulation results from MRST and a commercial compositional simulator. For comparison, we
also show EDFM simulation results within the same context. The cases studied involve modeling a single hydraulically fractured well
in the middle of two sealing barriers, which are basically two vertical fractures with very low fracture conductivity values. The motiva-
tion to provide a case study with a hydraulic fracture connected to a well (hydraulically fractured well) is to quantify the significance of
the pEDFM modification on production rates and cumulative production. Unlike the previous subsection, where we modeled the
pEDFM and EDFM cases with a more coarse grid than the explicit case, we modeled all cases using the same grid in this case study.
This allows us to isolate the errors that could be attributed to using coarser grids in EDFM and pEDFM (in comparison with the grids
used in the explicit-fracture model).

Fig. 14 illustrates our use of geometrically spaced grids to capture the expected transient flow behavior near the fracture surfaces.
To obtain the results shown in Figs. 15 and 16, we used a three-component mixture of methane (C1), ethane (C2), and propane (C3) at
mole fractions of 0.991, 0.0088, and 0.0002, respectively. Fig. 15 compares the pEDFM, EDFM, and MRST explicit-fracture model
results to the explicit-fracture model results from a commercial simulator and uses identical grids for the pEDFM, EDFM, and explicit-
fracture models. However, in Fig. 16, we use a structured grid for the pEDFM and EDFM model results, as is typical in these models,
and show the same MRST explicit-fracture model results from Fig. 15 for reference. The differences between the pEDFM and EDFM
results in Fig. 15 and those in Fig. 16 are entirely because the structured grids (used in Fig. 16) are unable to capture the transient behav-
ior near the fracture surfaces. We observe that EDFM significantly overestimates production in both Figs. 15 and 16, and this implies
that the overestimation of the production is not attributable to the coarseness of the structured grid used in Fig. 16. However, the 6%
underestimation of the expected ultimate recovery (EUR) by the pEDFM model in Fig. 16 is entirely because the coarse structured grid
used in this case is unable to account for the sharp pressure drops expected near the fracture surfaces.

To evaluate the accuracy of our 3D pEDFM approach in a truly compositional case with multiple fluid phases, we use the Bakken
Shale compositional data given by Nojabaei (2015) instead of the three-component gas mixture used to obtain Figs. 15 and 16. Fig. 17
shows the EDFM, pEDFM, and explicit-fracture model pressure profiles obtained on the left, middle, and right, respectively, and
Fig. 18 provides the corresponding saturation profiles. The pEDFM approach predicts a pressure profile that matches that from the
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Fig. 12—At the high fracture-conductivity values in this model, both the EDFM and pEDFM simulation results seem to match the
high-resolution reference solution. They are both able to capture the pressure variation near the fracture surfaces in this case.
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Fig. 13—Comparison of the pressure profiles from pEDFM and EDFM to the reference solution indicates that both models are
accurate at high fracture conductivities (left). At low fracture conductivities (right), EDFM is inaccurate, whereas pEDFM still
works accurately.
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high-resolution explicit-fracture model. Thus, it shows that pEDFM can correctly account for the effect of the two flow barriers,
whereas EDFM is unable to account for the presence of the flow barriers in the domain, although a high-resolution grid is used in the
matrix (for all model results in Figs. 17 and 18). Similarly, the oil-saturation profiles presented in Fig. 18 show that pEDFM is able
match the reference explicit-fracture solution, whereas EDFM cannot account for the flow barriers accurately. We do not show the cor-
responding gas saturation because this is a two-phase (oil-gas) simulation, and the gas-saturation values are simply 1 minus the oil
saturation values presented.

Fig. 19 shows the significance of accurately modeling the flow barriers in terms of the oil- and gas-production rates. It is well
known that log-log rate plots tend to compress the late-time production profile, so we provide the corresponding oil and gas cumulative
production on a Cartesian plot in Fig. 20. The results show that EDFM overestimates the EURs of oil and gas by 38% and 67%, respec-
tively. This is because it is unable to account for the presence of the flow barriers in the domain. Because we use the same grid as in the
explicit-fracture case, all of this error can be attributed to the EDFM model. Our 3D pEDFM model, in contrast, matches the explicit
fracture simulation results perfectly. To clarify, the results presented in Figs. 19 and 20 were obtained using the same grid shown in
Fig. 14, but the Bakken fluid was used instead of the C1, C2, C3 gas mixture used in Fig. 15.

Applications of 3D pEDFM to UOG Reservoir Case Studies

Here, we discuss how to apply our 3D pEDFM to model realistic fractured-reservoir systems that could have thousands of natural frac-
tures in any arbitrary orientations in 3D. The focus is on the modeling of UOG reservoirs, which are typically naturally fractured and
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Fig. 14—All three fractures are marked in yellow. The middle fracture is the hydraulic fracture, which is connected to a well,
whereas the other two fractures are modeled as sealing flow barriers with low fracture-permeability values.
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Fig. 15—Gas-production rates show that the pEDFM and MRST explicit-fracture models match the explicit-fracture simulation
results from a commercial simulator, but EDFM overestimates gas production. The cumulative gas production shows a perfect
match between the pEDFM and explicit-fracture models, whereas EDFM overestimates the gas EUR by 9%.
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tend to exhibit compositional effects. Although we focus on the modeling of specific realizations of a stochastic fracture network, we
understand that there is currently no technology available to determine the exact location of all the natural fractures in the subsurface.
Our goal is to provide a tool that can be used to study and evaluate the sensitivity of our model forecasts to the uncertainty in the
amount, distribution, geometry, and orientation of these natural fractures.
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Fig. 16—This result shows that pEDFM underestimates production (in this case) because the structured grids used are coarse and
unable to account for the sharp drops in pressure near the fracture. The pEDFM underestimates gas EUR by 6%, whereas EDFM
overestimates it by 10%.
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tively. The pEDFM pressure profile shows a perfect match with the explicit-fracture simulation results, whereas the EDFM pressure
profile does not match the explicit-fracture model pressure profile because EDFM cannot account for the presence of the
flow barrier.
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respectively. The pEDFM oil-saturation profile matches the explicit-fracture model saturation profile. As expected, EDFM oil satur-
ation does not match the explicit-fracture simulation results because EDFM is unable to account for the presence of the
flow barrier.
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Stochastic Generation of Fractures with Arbitrary Orientations in 3D. To facilitate the generation of stochastic fracture networks
in 3D, we use an opensource MATLAB code, called Alghalandis Discrete Fracture Network Engineering (Alghalandis Computing
2017). For a detailed tutorial on the stochastic generation of fractures in Alghalandis Discrete Fracture Network Engineering, we refer
the reader to Alghalandis (2018). We used Alghalandis Discrete Fracture Network Engineering to generate 1,000 natural fractures with
arbitrary orientations in 3D. Fig. 21 shows the resulting grid we obtained after meshing the hydraulic fractures and natural fractures.
The figure shows a system with eight fracture stages and three fractures per stage. The horizontal well is shown as the blue line that
runs through all the hydraulic fractures. A close examination of the natural fractures in Fig. 21 shows that there are two fracture sets at
two different orientations. Half of the fractures were modeled as conductive faults, whereas the other half were modeled as
flow barriers.

Bakken Shale Oil Reservoir Simulation. Table 2 summarizes the model parameters used in this Bakken shale case study. The com-
positional data and binary interaction constants used were obtained from Nojabaei (2015) and are tabulated in Appendix A. The simula-
tion was run for a period of 30 years, and the production performance plots given in Figs. 22 and 23 show that EDFM tends to
overestimate both oil- and gas-production rates and cumulative production. Fig. 22 presents the oil-production rates on a log-log plot
and the associated gas-production rate on a Cartesian plot. The cumulative oil and gas production presented in Fig. 23 shows that
EDFM overestimates the oil and gas EURs by 10% and 9%, respectively (in comparison with pEDFM). Recall that half of the natural
fractures were modeled as flow barriers, so it is normal to expect EDFM to overestimate production in this case. However, it is impor-
tant to note that the hydraulic fractures were modeled at the interface between matrix cells. This means that pEDFM simplifies to DFM
in this case, but this is not the case with EDFM.
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Fig. 19—Oil- and gas-production rates show that pEDFM matches the explicit-fracture simulation results, whereas EDFM overesti-
mates both oil and gas production. To clarify, all results in this figure were obtained using the same mesh shown in Fig. 14, but the
Bakken fluid was used instead of the C1, C2, C3 gas mixture used in Fig. 15.
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Fig. 20—Cumulative oil and gas production shows a perfect match between the pEDFM and explicit-fracture models, whereas the
EDFM simulation overestimates the oil and gas EURs by 38% and 67%, respectively.
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Fig. 21—This figure illustrates our simulation domain for the Bakken shale case study. It shows a system with eight fracture
stages and three fractures per stage.

 tinU IS tinU dleiF sretemaraP

Fracture half-length (xf) 229.659 ft 70 m 

Fracture width (wf) 0.00984 ft 0.003 m 

Reservoir thickness (h) 295.276 ft 90 m 

Cluster spacing 10 ft 3.05 m 

Fracture spacing 100 ft 30.5 m 

Matrix permeability (km) 0.01 md 9.9×10−18 m2

Fracture permeability (kf) 1,000 md 9.9×10−14 m2

Matrix porosity (φ)  40.0 40.0

Fracture porosity (φf)  5.0 5.0

Temperature (T) 175°F 352.594 K 

Well radius (rw) 0.32 ft 0.1 m 

Water saturation (Sw  32.0 32.0 )

Initial reservoir pressure (pi) 5,700 psia 39,300,117 Pa 

Flowing bottomhole pressure (pwf) 2,000 psia 1.379×107 Pa 

Table 2—Representative Bakken Shale reservoir parameters.
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Fig. 22—Results show that the estimated oil- and gas-production rates from EDFM are higher than those from pEDFM.
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Fig. 24 presents the pressure profile we obtained after visualizing our pEDFM simulation results in ParaViewVR (Ahrens et al. 2005).
As expected, there is a sharp drop in pressure near the surfaces of the hydraulic fractures. Fig. 25 shows the corresponding water- and
oil-saturation profiles obtained after 30 years of simulated production. The gas saturation is not shown because it is obtained as 1 minus
the sum of the water- and oil-saturation values. In this simulation, it remains constant at the specified initial value of 7%. The saturation
profiles are presented simply to show the capability of modeling three-phase compositional simulation using our 3D pEDFM model.

Although this Bakken shale oil case is a compositional simulation of eight hydrocarbon components, we only show the profiles for
the first two hydrocarbon components in Fig. 26. This figure is included only to demonstrate the capability of simulating several hydro-
carbon components and visualizing the mole fractions for each of these components.
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Fig. 23—Results show that EDFM overestimates the oil and gas EURs by 10% and 9%, respectively (in comparison to pEDFM).
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J201243 DOI: 10.2118/201243-PA Date: 24-July-20 Stage: Page: 2158 Total Pages: 19

ID: jaganm Time: 09:35 I Path: S:/J###/Vol00000/200078/Comp/APPFile/SA-J###200078

2158 August 2020 SPE Journal

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/25/04/2143/2715562/spe-201243-pa.pdf/1 by Louisiana State U

niversity, O
lufem

i O
lorode on 27 August 2022



Conclusions

This work addresses the issue of speed and accuracy in the modeling of realistic fractured UOG resources with the presentation of a
robust 3D pEDFM algorithm. This algorithm was implemented in a compositional simulator and applied to model Bakken shale oil res-
ervoir with more than 1,000 natural fractures in addition to the hydraulic fractures. Our simulation results indicate the feasibility of
modeling several hydraulic and natural fractures (with arbitrary orientations) efficiently and accurately using a 3D pEDFM model.

The simulation results from this work quantify the errors introduced by the modeling of low-conductivity fractures with EDFM. We
also provided several case studies that show the accuracy of the 3D pEDFM by comparing its production performance, pressure, and
saturation profiles with those from a high-resolution reference solution. In all cases, the 3D pEDFM shows superior performance and is
only slightly slower than the EDFM. This work can readily be applied to perform numerical studies of enhanced/improved oil recovery
in fractured UOG reservoirs and fractured carbonate reservoirs with heterogeneous fracture properties.

Although we restricted our implementation of the pEDFM to structured hexahedral meshes, we realize that an extension of this algo-
rithm to the more complex cases with corner-point and unstructured grids will further improve the usefulness of this work. For corner-
point grids with six faces, our 3D algorithm could be easily adapted. However, an extension to fully unstructured grids and complex
corner-point grids that pinch out (along fault surfaces) could be challenging. This is because the number of neighboring cells could be
more or less than six in these cases. These further extensions of the presented algorithm will be a subject for future studies.

Nomenclature

Aif?x ¼ area of fracture projections along each dimension, L2, m2

Ap
ij ¼ projection area, L2, m2

Annc ¼ area of a non-neighboring connection, L2, m2

dnnc ¼ non-neighboring connection distance, L, m
f ¼ fracture

if ¼ interaction between matrix cell i and fracture cell f
i; j ¼ cell indices

kf ¼ fracture permeability, L2, m2

km ¼ matrix permeability, L2, m2

knnc ¼ permeability of a non-neighboring connection, L2, m2

k þ 1 ¼ current timestep
m ¼ matrix

M �M ¼ interaction between two different host matrix cells
nnc ¼ non-neighboring connections

pM � F ¼ interaction a projection matrix and a fracture cell
R ¼ residual, MT�1L�3, kg�1m�3

Sa ¼ saturation of phase, a
Ti ¼ half transmissibility, L3, m3

Tnnc ¼ transmissibility factor for an NNC, L3, m3

~x ¼ X-, Y-, and Z-coordinates, L, m
~xe ¼ gridblock sizes in the X-, Y-, and Z-directions, L, m
Xi ¼ mass fraction of component i in the liquid phase
Yi ¼ mass fraction of component i in the gas phase
Zi ¼ overall mass fraction of component i
a ¼ fluid phase
/ ¼ porosity
q ¼ density, M/L3, kg/m3
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Appendix A—Chemical Properties for Compositional Simulation

Table A-1 provides the compositional data, and Table A-2 presents the binary interaction constants for the Bakken shale oil. Both
tables were culled from Nojabaei (2015). For the other simple fluid mixtures in this work, we use the chemical properties from Yaws
(1999) and Bell et al. (2014).

Components Mole Fraction 
Critical 

Pressure (psia) 
Critical  

Temperature (R) Acentric Factor 
Molar Weight 

(lb/lb-mol) 
Critical Volume  

(ft3/lb-mol) Parachor 

C1 0.36736 655.02 335.336 0.0102 16.535 1.58 74.8 

C2 0.14885 721.99 549.969 0.1028 30.433 2.34 107.7 

C3 0.09334 615.76 665.97 0.152 44.097 3.25 151.9 

C4 0.05751 546.46 759.208 0.1894 58.124 4.11 189.6 

C4–C6 0.06406 461.29 875.479 0.2684 78.295 5.39 250.2 

C7–C12 0.15854 363.34 1,053.25 0.4291 120.562 8.81 350.2 

C13–C21 0.0733 249.61 1,332.095 0.7203 220.716 15.19 590.0 

C22–C80 0.03704 190.12 1,844.491 1.0159 443.518 36 1,216.8 

Table A-1—Compositional data for Bakken shale oil.

 C1 C2 C3 C4 C5–C6 C7–C12 C13–C21 C22–C80

C1 0 0.005 0.0035 0.0035 0.0037 0.0033 0.0033 0.0033 

C2 0.005 0 0.0031 0.0031 0.0031 0.0026 0.0026 0.0026 

C3 0.0035 0.0031 0 0 0 0 0 0 

C4 0.0035 0.0031 0 0 0 0 0 0 

C5–C6 0.0037 0.0031 0 0 0 0 0 0 

C7–C12 0.0033 0.0026 0 0 0 0 0 0 

C13–C21 0.0033 0.0026 0 0 0 0 0 0 

C22–C80 0.0033 0.0026 0 0 0 0 0 0 

Table A-2—Binary interaction constants for Bakken shale oil.
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