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A B S T R A C T

The accurate and efficient modeling of hydraulic fracture propagation is required to design optimal hydraulic
fracture jobs in fractured tight rocks. To this end, we propose and demonstrate the first fixed-stress coupling
of pEDFM with XFEM to model hydraulic fracture propagation in naturally fractured reservoirs. This addresses
the limitation of EDFM to low-conductivity fractures and is much faster than DFM and fully coupled schemes,
which have mostly been applied to the modeling of fracture propagation in fractured reservoirs. The validation
studies presented indicate the accuracy of our model at reproducing the analytical solutions to coupled
geomechanics and fracture propagation problems. We show that the iterative coupling of pEDFM with
XFEM accounts for the interaction between the propagating hydraulic fracture and low-conductivity natural
fractures in its vicinity, whereas EDFM does not. This is important when modeling hydraulic fracturing and
the subsequent production from multiply fractured hydraulic wells. The iterative coupling approach used
in this work provides the flexibility and simplicity needed to model complex fluid and rock behaviors in
unconventional oil and gas reservoirs.
. Introduction

The production of oil and gas from petroleum reservoirs involves
everal coupled physical mechanisms, which vary in importance de-
ending on the recovery mechanisms and reservoir rock and fluid prop-
rties. These coupled mechanisms could include fluid flow, mechanical
eformation and fracturing, chemical reactions, and heat flow. When
odeling primary recovery from conventional petroleum reservoirs,
e mainly focus on fluid flow and ignore other physical mechanisms.
owever, in unconventional oil and gas (UOG) reservoirs, we typically
onsider additional mechanisms such as mechanical deformation and
ydraulic fracture propagation. This is because of the importance of
ydraulic fractures in the commercial development of these reservoirs.
ith the increased contribution of UOG reservoirs to the total US oil

nd gas production over the last decade, several researchers have fo-
used on the modeling of hydraulic fracturing and the production from
ultiply fractured horizontal wells. Developing a fast and accurate
odel to predict hydraulic fracture propagation and the subsequent
roduction from UOG reservoirs is essential to optimizing hydraulic
racture jobs, production constraints, and well and fracture spacing.

Hydraulic fracturing in the oil and gas industry today is still largely
mpirical and based on field experience. However, the current state
f the art has evolved to leverage analytical and simplistic numerical

∗ Corresponding author.
E-mail addresses: hrashid@nevada.unr.edu (H. Rashid), folorode@lsu.edu (O. Olorode), chdozie@gmail.com (C. Chukwudozie).

tools that help make critical decisions during the fracturing job. The
analytical techniques used to interpret real-time hydraulic fracturing
data include the step-down rate tests, pre-closure analyses based on
the G-function and square-root time analyses, and the after-closure
analyses based on Nolte (1979), Nolte et al. (1997) and Soliman et al.
(2005). Although these analytical techniques are fast enough to be
used in real-time during hydraulic fracturing, they only give qualitative
information on the fracture properties. This limits their usefulness in
truly optimizing hydraulic fracturing jobs to maximize the production
from hydraulically fractured UOG reservoirs. So, the oil and gas indus-
try typically uses commercial simulators that are based on simplistic
assumptions about the geometry of the propagating fractures. Some
of the simplistic models implemented in these simulators include the
KGD (Geertsma and De Klerk, 1969; Khristianovic and Zheltov, 1955),
PKN (Perkins and Kern, 1961), planar 3D (Siebrits and Peirce, 2002),
and pseudo-3D models (Dontsov and Peirce, 2015).

Although the simplifying assumptions in most commercial hydraulic
fracturing simulators make them fast enough for real-time hydraulic
fracturing optimization, they are typically unable to model fracture
propagation in a fully 3D domain. Additionally, most of these simu-
lators cannot rigorously model the expected interaction between the
propagating fracture and individual natural fractures in these tight
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rocks (Rahman and Rahman, 2013; Liu et al., 2014). Therefore, various
researchers have developed numerical models to simulate the propaga-
tion of only a few hydraulic fractures in 3D. Most of these models are
based on the finite element method (FEM) (Clifton and Abou-Sayed,
1981) and can account for the coupled flow and mechanical deforma-
tion of the reservoir and fracture propagation. However, the standard
FEM does not conserve mass and fluxes at the element interfaces and
requires upwinding to obtain non-oscillatory solutions. So, most finite
element simulations of coupled flow and geomechanics are limited to
the flow of incompressible fluids. The modeling of hydraulic fracture
propagation with the standard FEM requires re-meshing the simulation
domain (which conforms to the fracture geometry) as the fracture
propagates (Khoei, 2014).

To ensure the conservation of mass and fluxes when solving the cou-
pled flow and geomechanics problem, some researchers have combined
the use of the finite volume method for flow with FEM (Kim, 2010;
Efendiev et al., 2015). The embedded discrete fracture model (Li and
Lee, 2008) was developed to efficiently account for each fracture in a
reservoir without conforming the matrix mesh to the geometry of the
fractures, as in the discrete fracture model (Kim and Deo, 2000; Karimi-
Fard and Firoozabadi, 2001). Ţene et al. (2017) showed that EDFM
does not account for low-conductivity fractures, and presented the
projection-based EDFM (pEDFM) to address this limitation. Using these
fracture models in finite volume simulators ensures the conservation
of mass and fluxes in both matrix and fracture cells. FEM has also
been extended to facilitate fracture propagation modeling (without re-
meshing) by adding enrichment functions to the standard finite-element
approximations. The extended finite element method (XFEM) (Moës
et al., 1999; Dolbow, 1999) significantly enhances the modeling of
cracks by its use of the partition of unity (PoU) to locally enrich the
basis functions with a Heaviside step function for the crack surface,
and an asymptotic function for the crack tip (Duarte and Oden, 1996;
Melenk and Babuška, 1996). The PoU enables the definition of a set of
functions that sums up to unity on a domain of interest.

The modeling of hydraulic fracture propagation in naturally frac-
tured reservoirs is essential, considering that virtually all petroleum
reservoirs are naturally fractured to some extent. This is even more
important in UOG reservoirs, which are typically naturally fractured
and require hydraulic fracturing for commercial development. A few
authors have proposed using EDFM and XFEM to model the coupled
flow, deformation, and fracturing of naturally fractured reservoirs. Ren
and Younis (2020) modeled fully coupled flow and geomechanics using
EDFM and XFEM, and later extended this to model fully coupled flow,
geomechanics, and hydraulic fracture propagation (Ren and Younis,
2020). Wang et al. (2020) presented an algorithm that couples EDFM
and XFEM, but they mentioned that their study does not account for
the effect of the pore pressure on mechanical deformation.

Hydraulic fractures have been observed to easily propagate further
into the matrix when the fracture length is greater than approximately
one meter because the tensile strength becomes irrelevant, and stresses
tend to concentrate at the fracture tips (Zoback, 2010). This leads to a
dissipation of some of the energy needed to open up the fracture (mode
I fracture) against the least principal stress, resulting in small fracture
apertures. Smaller fractures lead to low fracture conductivity and make
the modeling of such fractures with EDFM questionable. This work
presents the first sequential/iterative coupling of pEDFM with XFEM,
which enables the rigorous modeling of coupled flow, deformation,
and hydraulic fracturing in reservoirs where the natural fractures could
either be sealing or conductive.

Kim (2010) discussed four different sequential (or iterative) cou-
pling approaches to solve the coupled flow and geomechanics prob-
lems. These include the fixed-stress, fixed-strain, drained, and undrained
splitting schemes. The fixed-strain and drained splitting approaches are
shown to be conditionally stable at best, while the fixed-stress and
undrained splitting schemes are unconditionally stable. Furthermore,
2

the fixed-stress splitting approach exhibits faster convergence than the
undrained splitting scheme. This work extends the fixed-stress split-
ting coupling of the flow and geomechanics equations to account for
hydraulic fracture propagation. Unlike most previous studies that use
a fully coupled solution approach, this sequentially coupled approach
allows us to solve the flow and mechanical problems sequentially
within a loop.

One of the unique advantages of this approach includes the im-
proved computational efficiency when modeling hydraulic fracture
propagation in the presence of pre-existing fractures. This is because
the solution of the flow and mechanical problems separately implies
that we only need to invert two smaller matrix systems instead of
inverting one large matrix system, as in the fully coupled approach.
The modeling of fluid flow in fractures with pEDFM also helps im-
prove the computational efficiency because the mesh does not have
to conform to the geometry of all natural fractures as in the discrete
fracture model (DFM). Another advantage of the proposed approach
lies in the flexibility of combining different flow and geomechanics
simulators (Bostrøm and Skomedal, 2004; Li et al., 2019), and the
ability to model larger simulation domains in the mechanical problem
than in the flow problem.

The rest of this paper begins with the governing equations for flow
in matrix and fractures and the linear momentum balance equation for
the mechanical deformation of a porous medium. These equations are
then numerically discretized using the finite volume method (FVM)
for fluid flow and XFEM for the linear momentum balance equation.
Next, we present our extension of the fixed-stress splitting approach to
model hydraulic fracture propagation and conclude the paper with a
discussion of the verification and application of our simulation model.

2. Governing equations

This section presents the partial differential equations (PDE) that
govern fluid flow in deformable reservoir matrices and fractures, as
well as the equations that describe the deformation of fractured porous
media. The constitutive relationships used in these PDEs are also pro-
vided.

2.1. Flow in a deformable porous matrix

The governing equation for single-phase flow in a deformable
porous matrix can be given as (Kim, 2010):

𝜙𝑚𝜌𝑙𝑐𝑙
𝜕𝑝𝑚
𝜕𝑡

+ 𝜌𝑙
𝛼 − 𝜙𝑚
𝐾𝑠

𝜕𝑝𝑚
𝜕𝑡

+ 𝛼𝜌𝑙
𝜕𝜖𝑣
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑙𝑣𝑙
)

= 𝜌𝑙𝑞∕𝑉𝑏. (1)

Here, 𝜌𝑙 is density of the fluid, 𝜙𝑚 is the true porosity of the matrix (that
is, the ratio of the current pore volume to the current bulk volume), 𝐾𝑠
represents the bulk modulus of the solid grain, 𝑐𝑙 is the liquid com-
pressibility, and 𝛼 is the Biot coefficient. The symbol 𝜖𝑣 represents the
volumetric strain of the porous medium, 𝑘𝑚 is the matrix permeability,
𝜇 is the fluid viscosity, 𝑔 represents the acceleration due to gravity,
𝑝𝑚 is the pore pressure in the matrix, 𝑡 is time, and 𝑧 refers to the
depth. The symbol 𝑞 on the right-hand side of the equation represents
the contribution from a source/sink, and is multiplied by density and
divided by bulk volume (𝑉𝑏) to ensure dimensional consistency. The
liquid flow velocity (𝑣𝑙) in Eq. (1) can be obtained from the Darcy
equation, which is a constitutive equation that relates flow velocity and
pressure gradient, as follows:

𝑣𝑙 = −
𝑘𝑚
𝜇

[∇𝑝𝑚 − 𝜌𝑙𝑔∇𝑧]. (2)

The Biot coefficient can be written as a function of the bulk modulus
of the drained rock skeleton and that of the solid grains (𝐾𝑑𝑟 and 𝐾𝑠),
as follows (Coussy, 2007):

𝛼 = 1 −
𝐾𝑑𝑟 . (3)

𝐾𝑠
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Hooke’s law can be written in terms of total volumetric stress (𝜎𝑣) and
olumetric strain (𝜖𝑣) as follows:
(

𝜎𝑣 − 𝜎𝑣,0
)

+ 𝛼
(

𝑝𝑚 − 𝑝𝑣,0
)

= 𝐾𝑑𝑟𝜖𝑣, (4)

here the zero subscripts indicate that the corresponding quantities are
efined at the initial state. Differentiating each term with respect to
ime and multiplying through by 𝛼 yields:

𝛼
𝐾𝑑𝑟

𝜕𝜎𝑣
𝜕𝑡

+ 𝛼2

𝐾𝑑𝑟

𝜕𝑝𝑚
𝜕𝑡

= 𝛼
𝜕𝜖𝑣
𝜕𝑡
. (5)

ubstituting this into Eq. (1) yields the governing equation (for flow in
deformable porous matrix) in terms of the total volumetric stress:

𝑙

[

𝜙𝑚𝑐𝑙 +
(𝛼 − 𝜙𝑚)
𝐾𝑠

+ 𝛼2

𝐾𝑑𝑟

]

𝜕𝑝𝑚
𝜕𝑡

+ 𝜌𝑙
𝛼
𝐾𝑑𝑟

𝜕𝜎𝑣
𝜕𝑡

−∇ ⋅
(

𝜌𝑙
𝑘𝑚
𝜇

[∇𝑝𝑚 − 𝜌𝑙𝑔∇𝑧]
)

− 𝜌𝑙𝑞∕𝑉𝑏 = 0. (6)

2.2. Flow in fractures

This subsection discusses the modeling of fluid flow in fractures
using either the cubic law (based on lubrication theory) for flow in
parallel plates or flow in porous media, which has been used in virtually
all previously published attempts of coupling EDFM or pEDFM with
XFEM.

2.2.1. Use of cubic law for the fluid flow in fractures
In standard fracture propagation models that represent the fracture

as a line (for 2D reservoir models), the pressures on the nodes that make
up this line are applied as internal boundary conditions. The governing
equation for fracture flow based on lubrication theory can be given (for
a 2D system) as (Batchelor, 1967):

𝜕𝑤𝑓
𝜕𝑡

− 𝜕
𝜕𝑥

(

𝑤3
𝑓

12𝜇
𝜕𝑝𝑓
𝜕𝑥

)

+ 𝑔(𝑥) = 0, (7)

where 𝑤𝑓 refers to the fracture aperture, 𝑔(𝑥) refers to the leakage of
the fracture fluid into the surrounding porous medium, and subscript
𝑓 refers to the fracture. It is worth mentioning that this equation
is referred to as the cubic law, because 𝑤𝑓 is raised to a power of
three. An estimation of the permeability from the flow through parallel
plates using this equation yields the well-known equation for fracture
permeability (𝑘𝑓 = 𝑤2

𝑓∕12). Substituting this definition of 𝑘𝑓 and
integrating over a fracture domain (𝛥𝑥𝛥𝑦) yields:

∫𝛺

𝜕𝑤𝑓
𝜕𝑡

𝑑𝑥𝑑𝑦 − ∫𝛺
∇ ⋅

(𝑤𝑓𝑘𝑓
𝜇

∇𝑝𝑓

)

𝑑𝑥𝑑𝑦 + ∫𝛺
𝑔 (𝑥) 𝑑𝑥𝑑𝑦 = 0 (8)

Integrating using the Green’s theorem, we obtain:
𝛥𝑤𝑓
𝛥𝑡

𝐿𝑓𝑤𝑓 − ∫𝜕𝛺

(𝑤𝑓𝑘𝑓
𝜇

∇𝑝𝑓

)

𝑑𝑠 + 𝑔 (𝑥)𝐿𝑓𝑤𝑓 = 0 (9)

2.2.2. Use of porous medium approach for fluid flow in fractures
The governing equation for 1D flow in non-deformable porous

media is given as:

𝜙𝑓 𝑐𝑙
𝜕𝑝𝑓
𝜕𝑡

− ∇ ⋅
(𝑘𝑓
𝜇

[

∇𝑝𝑓 − 𝜌𝑙𝑔∇𝑧
]

)

− 𝑞∕𝑉 = 0, (10)

for slightly compressible or incompressible fluids, where the fluid
density is assumed constant. Even when the gravity and source/sink
terms in Eq. (10) are ignored, an inspection of both equations reveals
that Eq. (10) does not account for the variation of the fracture aperture
in space (in the flux term) and in time (in the storage term). So, the
units of each term in Eq. (10) differ from those in Eq. (7) by one length
scale. Although Eq. (10) might be applicable in propped hydraulic
fractures because it was developed for porous media, its applicability
in open cracks without sands/proppants could be questionable. To
enable the modeling of propped or unpropped hydraulic fractures, we
developed a simulator that is able to use either Eq. (7) or (10). If we
3

consider compressible fluids, the governing equation for fluid flow in
the propped fractures will be similar to that for flow in the matrix,
but with the assumption that the fracture is unable to support shear
stresses. So, we neglect the contributions from the volumetric strain,
matrix skeleton, and solid grain deformation in Eq. (6) to obtain:

𝜌𝑙𝜙𝑓 𝑐𝑙
𝜕𝑝𝑓
𝜕𝑡

− ∇ ⋅
(

𝜌𝑙
𝑘𝑓
𝜇

[

∇𝑝𝑓 − 𝜌𝑙𝑔∇𝑧
]

)

− 𝜌𝑙𝑞∕𝑉𝑏,𝑓 = 0. (11)

t is worth noting that Eq. (11) is basically the same as Eq. (10) without
he assumption of a constant fluid density. Although in pEDFM, the
racture cells are meshed in n-1 dimensions (where n is the number
f dimensions of the reservoir system), the computation accounts for
he fracture aperture and solves for the pressures in the centroids of
hese fracture cells. The use of non-neighboring connections facilitates
he coupling between the matrix and fracture pressures and does not
equire applying fracture pressures as boundary conditions, as in other
EM approaches (where the fracture pressures are available only at the
odes).

.3. Mechanical deformation of a pore-filled rock

The governing equation for the deformation of a pore-filled rock is
he linear momentum balance equation (sometimes referred to as the
quations of equilibrium, or quasi-static Cauchy equations of motion).
t is given as:

⋅ 𝜎 + 𝑏 = 0, (12)

here 𝜎 is the total (Cauchy) stress tensor and 𝑏 is the body force that
cts on the formation. Using the modifications to Terzaghi’s (Terzaghi
t al., 1996) simple effective stress, modified effective stress can be
efined as (Biot, 1941):
′ = 𝜎 + 𝛼𝑝𝐼, (13)

here 𝐼 is an identity matrix and 𝑝 is the pore pressure. It is important
o note that tensile stresses and strains are assumed positive in this
ork (engineering convention). Hooke’s law provides the constitutive

elationship between stress and strain, as follows:
′ = 𝐶 ∶ 𝜖, (14)

here 𝐶 is the fourth-order elastic stiffness tensor of the rock and
𝑝𝑠𝑖𝑙𝑜𝑛 is the second-order strain tensor. Substituting this into Eq. (12)
ields the governing equation for the mechanical deformation of a
ore-filled rock:

⋅ [𝐶 ∶ 𝜖 − 𝛼𝑝𝐼] + 𝑏 = 0. (15)

. Discretization

This section discusses how to discretize and solve the governing
quations for coupled flow and deformation in naturally fractured
eservoirs. The flow in the matrix and fractures are solved using
EDFM, while the mechanical deformation and hydraulic fracture
ropagation are solved using XFEM.

.1. Discretization of the flow equation in the matrix

To solve the governing equation for fluid flow in the matrix, we
iscretize the partial differential Eq. (6) in time and space. We use the
ackward Euler (implicit) scheme for temporal discretization and the fi-
ite volume method (FVM) for spatial discretization. The discretization
f Eq. (6) in time yields:

𝜌𝑛+1𝑙

[

𝜙𝑚𝑐𝑙 +

(

𝛼 − 𝜙𝑚
)

𝐾𝑠
+ 𝛼2

𝐾𝑑𝑟

]𝑛+1 (
𝑝𝑛+1𝑚 − 𝑝𝑛𝑚

𝛥𝑡

)

+𝜌𝑛+1𝑙
𝛼
𝐾𝑑𝑟

(

𝜎𝑛+1𝑣 − 𝜎𝑛𝑣
𝛥𝑡

)

−∇ ⋅
(

𝜌𝑙
𝑘𝑚 [

∇𝑝𝑚 − 𝜌𝑙𝑔∇𝑧
]

)𝑛+1
−
(

𝜌𝑙𝑞∕𝑉𝑏
)𝑛+1 = 𝑅𝑛+1𝑚 .

(16)
𝜇
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The subscripts n+1 and n in this equation refer to the current and
previous time steps, respectively. Note that the zero on the right-hand
side of Equation [6] has been replaced by the residual of the ma-
trix flow equation (𝑅𝑚) because the temporal discretization introduces
runcation errors.

Next, we discretize Eq. (16) in space using FVM with two-point flux
pproximation (TPFA). This involves integrating the equation over a
ontrol volume that has a bulk volume, 𝑉𝑏. Lie (2019) presented an

elegant implementation of the FVM using discrete divergence (div) and
discrete gradient (grad) operators. Eq. (16) can be discretized spatially
using these discrete operators to obtain:

𝑉𝑏𝜌
𝑛+1
𝑙

[

𝜙𝑚𝑐𝑙 +

(

𝛼 − 𝜙𝑚
)

𝐾𝑠
+ 𝛼2

𝐾𝑑𝑟

]𝑛+1 (
𝑝𝑛+1𝑚 − 𝑝𝑛𝑚

𝛥𝑡

)

+𝑉𝑏𝜌𝑛+1𝑙
𝛼
𝐾𝑑𝑟

(

𝜎𝑛+1𝑣 − 𝜎𝑛𝑣
𝛥𝑡

)

−𝑑𝑖𝑣
(

𝜌𝑙
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑
(

𝑝𝑚
)

− 𝜌𝑙 𝑔 𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1

−
(

𝜌𝑙𝑞
)𝑛+1 = 𝑅𝑛+1𝑚 ,

(17)

here the div and grad operators are implemented in Lie (2019)
s functions that multiply a sparse matrix (that is either a discrete
ivergence or a discrete gradient matrix) with a vector, such as p or
in this equation. The face transmissibility, 𝑇𝑖,𝑘 is given as:

𝑖,𝑘 = 𝐴𝑖,𝑘𝐾𝑖
𝑐𝑖,𝑘 ⋅ ⃗𝑛𝑖,𝑘
|

|

𝑐𝑖,𝑘||
2
, (18)

where ⃗𝑛𝑖,𝑘 represents the unit normal vector from the centroid of a cell,
i to the interface between cells 𝑖 and 𝑘, and ⃗𝑐𝑖,𝑘 is the vector from the
cell centroid to the face centroid. 𝑇𝑖,𝑘 is the half-transmissibility, which
epresents the contribution of a cell to a face transmissibility. It is so-
alled because it entails the contribution of the two cells on the sides
f each face of a cell in the simulation domain.

.2. Fracture modeling using the pEDFM

Like EDFM, the projection-based EDFM simulates fractures as (n-1)-
imensional cells. The matrix is typically discretized independently of
he fractures, using structured n-dimensional cells. This independence
n the meshing of the matrix and fractures results in the embedment of
he fracture cells in the matrix cells. Both pEDFM and EDFM account
or the exchange of fluids between the matrix and fractures using the
oncept of non-neighboring connections and transmissibilities. In stan-
ard reservoir simulation, the concept of non-neighboring connections
s used when a cell needs to exchange fluids with another cell that is not
ts topological neighbor. It involves the addition of a non-neighboring
ass rate, 𝑞𝑛𝑛𝑐 to the discretized governing matrix flow equation (17)

s follows:

𝑉𝑏𝜌
𝑛+1
𝑙

[

𝜙𝑚𝑐𝑙 +

(

𝛼 − 𝜙𝑚
)

𝐾𝑠
+ 𝛼2

𝐾𝑑𝑟

]𝑛+1 (
𝑝𝑛+1𝑚 − 𝑝𝑛𝑚

𝛥𝑡

)

+𝑉𝑏𝜌𝑛+1𝑙
𝛼
𝐾𝑑𝑟

(

𝜎𝑛+1𝑣 − 𝜎𝑛𝑣
𝛥𝑡

)

𝑑𝑖𝑣
(

𝜌𝑙
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑
(

𝑝𝑚
)

− 𝜌𝑙𝑔 𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1

−
(

𝜌𝑙𝑞
)𝑛+1 + (𝑞𝑛𝑛𝑐 )𝑛+1 = 𝑅𝑛+1𝑚 ,

(19)

here 𝑞𝑛𝑛𝑐 is the mass rate of the fluid that is exchanged across the
NC (in units of mass per time). The mass rate is given as:

𝑛𝑛𝑐 =
𝑁𝑛𝑛𝑐
∑

𝑗=1
𝐴𝑛𝑛𝑐𝑗

𝑘𝑛𝑛𝑐𝑗

𝜇
𝜌

[

(𝑝 − 𝜌𝑔𝑧) − (𝑝 − 𝜌𝑔𝑧)𝑛𝑛𝑐𝑗

𝑑𝑛𝑛𝑐𝑗

]

. (20)

Here, subscript 𝑗 refers to the index of the current non-neighboring
connection and ranges from one to the total number of NNCs (𝑁 ).
4

𝑛𝑛𝑐
he two quantities in the numerator of the last term are the flow
otentials of the current cell and that of its non-neighboring cell. We
epresent the permeability, area, and distance of the NNCs by 𝑘𝑛𝑛𝑐 , 𝐴𝑛𝑛𝑐 ,
nd 𝑑𝑛𝑛𝑐 , respectively. The transmissibility of an NNC can be estimated
s:
𝑛𝑛𝑐 = 𝑘𝑛𝑛𝑐𝐴𝑛𝑛𝑐

𝑑𝑛𝑛𝑐
, (21)

where the expressions for 𝑘𝑛𝑛𝑐 , 𝐴𝑛𝑛𝑐 , and 𝑑𝑛𝑛𝑐 are unique to each
type of NNC. In EDFM, we can have up to four different transmissi-
bilities. These include the standard transmissibility between pairs of
neighboring matrix cells, the standard transmissibility between pairs
of neighboring fracture cells that are part of the same fracture plane,
the non-neighboring transmissibility between a matrix cell and an em-
bedded fracture cell, and the non-neighboring transmissibility between
two fracture cells that are part of two different fracture planes. We refer
the reader to Moinfar et al. (2013) for more details on each of these
EDFM NNCs. Here, we only provide the equations needed to obtain the
non-neighboring transmissibilities. The standard transmissibilities are
computed as part of the flux term (the div() term) in Eq. (19), while
the non-neighboring transmissibilities are computed as follows:

1. Matrix-Fracture Connectivity:
The expressions for 𝑘𝑛𝑛𝑐 , 𝐴𝑛𝑛𝑐 , and 𝑑𝑛𝑛𝑐 for this connectivity are
given as:

𝐴𝑛𝑛𝑐 = 2𝐴𝑓 , (22)

𝑘𝑛𝑛𝑐 =
𝑘𝑚𝑘𝑓
𝑘𝑚 + 𝑘𝑓

, (23)

𝑑𝑛𝑛𝑐 =
∫𝑣 𝑥𝑛𝑑𝑣
𝑉

, (24)

where, 𝑘𝑚 is the matrix permeability, 𝑘𝑓 is the fracture per-
meability, and 𝐴𝑓 is the fracture area. The symbols 𝑥𝑛, 𝑑𝑣,
and 𝑣 represent the normal distance of the element from the
fracture, the volume element, and cell volume, respectively.
The 𝑘𝑛𝑛𝑐 , 𝐴𝑛𝑛𝑐 , and 𝑑𝑛𝑛𝑐 values computed from these equations
are then used to compute the corresponding non-neighboring
transmissibility using Eq. (21).

2. Intersecting Fracture Connectivity:
The non-neighboring transmissibility for this connectivity is
given as:

𝑇 𝑛𝑛𝑐 =
𝑇1𝑇2
𝑇1 + 𝑇2

, (25)

where, 𝑇1 and 𝑇2 are the half transmissibilities of the two inter-
secting fractures:

𝑇1 =
𝑘𝑓1𝜔1𝐿𝑖𝑛𝑡

𝑑𝑓1
, (26)

𝑇2 =
𝑘𝑓2𝜔𝑓2𝐿𝑖𝑛𝑡

𝑑𝑓2
. (27)

In these two equations, 𝐿𝑖𝑛𝑡 represents the length of the line
formed when two fracture cells intersect in a matrix cell, while
𝜔𝑓 and 𝑘𝑓 are the fracture aperture and permeability, respec-
tively. The symbols 𝑑𝑓1 and 𝑑𝑓2 represent the distances from the
centroids of fracture cells 1 and 2 to the intersection line.

The projection-based embedded discrete fracture model can model
fractures with low conductivities by including an NNC between a
fracture and one of its two neighboring matrix cells in each direction.
The determination of the matrix cell to be selected out of a pair
of cells (in each direction) requires an algorithm. Jiang and Younis
(2017) presented this algorithm for 2D systems, while Olorode et al.
(2020) presented an algorithm for 3D systems. The matrix cells selected
using this algorithm are referred to as the ‘‘projection cells’’, while the
matrix cells that host the fracture cells are referred to as the ‘‘host
cells’’. The projection-based EDFM adds two more NNCs to the EDFM
connectivities. These are:
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1. Projection Matrix/Fracture Transmissibility:
The projection matrix/fracture (pM-F) transmissibility is the
non-neighboring transmissibility between a projection matrix
cell and a fracture cell. Ţene et al. (2017) gives the expression
for this transmissibility as:

𝑇 𝑛𝑛𝑐𝑝𝑀−𝐹 =
𝐴𝑖𝑓⊥𝑥⃗𝑘𝑛𝑛𝑐𝑝𝑀−𝐹

𝑑𝑛𝑛𝑐𝑝𝑀−𝐹
, (28)

where,

𝑘𝑛𝑛𝑐𝑝𝑀−𝐹 =
𝑘𝑝𝑀𝑘𝑓
𝑘𝑝𝑀 + 𝑘𝑓

. (29)

In this equation, 𝐴𝑖𝑓⟂𝑥⃗ is the area of the fracture projections
along the spatial directions. The symbol 𝑥⃗ represents the spatial
coordinates (X and Y in 2D or X, Y, and Z in 3D), and 𝑑𝑛𝑛𝑐𝑝𝑀−𝐹 is
the distance between the centroid of the fracture and that of the
projection cell.

2. Projection Matrix/Matrix Transmissibility:
The projection matrix/matrix (pM-M) transmissibility is the
transmissibility between a host matrix cell and its corresponding
projection matrix cells. It is given as:

𝑇 𝑛𝑛𝑐𝑝𝑀−𝑀 = 𝑘
𝐴𝑖𝑖 − 𝐴𝑖𝑓⊥𝑥

𝛥𝑥𝑒
, (30)

where 𝛥𝑥𝑒 refers to the grid block sizes in each spatial direction.

3.3. Discretization of the flow equation in the fracture

The fracture flow equation (11) is discretized in time and space
using the backward Euler and finite volume methods to obtain:

(

𝑐𝑙𝜌𝑙𝜙𝑓
)𝑛+1 𝑝

𝑛+1
𝑓 − 𝑝𝑛𝑓
𝛥𝑡

− ∇ ⋅
(

𝜌𝑙
𝑘𝑓
𝜇

[

∇𝑝𝑓 − 𝜌𝑙𝑔∇𝑧
]

)𝑛+1

−
(

𝜌𝑙 𝑞∕𝑉𝑏
)𝑛+1
𝑓

− (𝑞𝑛𝑛𝑐 )𝑛+1𝑓 = 𝑅𝑛+1𝑓 .

(31)

Integrating over the fracture bulk volume (𝑉𝑏,𝑓 ) and using the discrete
𝑑𝑖𝑣 and 𝑔𝑟𝑎𝑑 operators for the flux term (as in Section 3.1), we obtain:

(

𝑉𝑏,𝑓 𝑐𝑙𝜌𝑙𝜙𝑓
)𝑛+1 𝑝

𝑛+1,𝑗
𝑓 − 𝑝𝑛𝑓
𝛥𝑡

−𝑑𝑖𝑣
(

𝜌𝑙
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑
(

𝑝𝑓
)

− 𝜌𝑙 𝑔 𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1,𝑗

𝑓

−
(

𝜌𝑙 𝑞
)𝑛+1,𝑗
𝑓 − (𝑞𝑛𝑛𝑐 )𝑛+1,𝑗𝑓 = 𝑅𝑛+1,𝑗𝑓 .

(32)

Here, the bulk volume of each fracture cell is calculated as the product
of the reservoir thickness, fracture length at the current time step, and
fracture aperture at the current time step. The length and aperture
of each fracture cell at the current time step are computed from the
coupled solution of the flow and mechanical deformation problems,
which are discussed in the next section.

3.4. Discretization of the linear momentum balance equation with XFEM

The governing equation for the conservation of linear momentum
balance (12) can be expressed in the weak form by multiplying Eq. (12)
by a test function 𝑣(𝑥, 𝑡), and integrating over a volume, 𝛺, to obtain:

∫𝛺
𝑣 (𝑥, 𝑡) (∇ ⋅ 𝜎 + 𝑏) 𝑑𝛺 = 0. (33)

The Appendix presents the XFEM procedure to discretize this equation,
as in Khoei (2014). The matrix form of the discretized equation is given
as:
[

𝐾𝑢𝑢 𝐾𝑢𝑎
]{

𝑈
}

=
{

𝐹𝑢
}

, (34)
5

𝐾𝑎𝑢 𝐾𝑎𝑎 𝐴 𝐹𝑎
here each term in this equation is obtained from Eqs. (A.17)–(A.22)
n Appendix.

. A fixed-stress splitting algorithm to couple pEDFM and XFEM

A closer look at the n+1 and n subscripts in Eq. (19) indicates
hat this equation is written in the fully coupled form because the
isplacement and pressure are required at the current time step, n+1.
he solution of the fully coupled form of the equation typically involves
he use of a Newton–Raphson iterative scheme, which involves another
oop within the time-stepping loop. As mentioned in the introduction,
his work uses fixed-stress splitting, which is an unconditionally stable
nd convergent iterative coupling scheme. Like in the Newton–Raphson
cheme, the fixed-stress splitting approach involves another loop within
he time-stepping loop. However, in this inner loop, we fix the deriva-
ive of the mean volumetric stress with respect to time while solving
he matrix flow equation for pressure (Kim, 2010). The fixed-stress
pproach allows us to keep the derivative of volumetric stress constant,
s follows:

𝜕𝜎𝑣
𝜕𝑡

=
𝜎𝑛+1,𝑗−1𝑣 − 𝜎𝑛𝑣

𝛥𝑡
, (35)

where j and j-1 are the current and previous indices of the inner loop for
the fixed-stress splitting approach. Substituting Eq. (35) into Eq. (19)
yields:

𝑉𝑏𝜌
𝑛+1,𝑗
𝑙

[

𝜙𝑚𝑐𝑙 +

(

𝛼 − 𝜙𝑚
)

𝐾𝑠
+ 𝛼2

𝐾𝑑𝑟

]𝑛+1,𝑗
(

𝑝𝑛+1,𝑗 − 𝑝𝑛

𝛥𝑡

)

+𝑉𝑏𝜌
𝑛+1,𝑗
𝑙

𝛼
𝐾𝑑𝑟

(

𝜎𝑛+1,𝑗−1𝑣 − 𝜎𝑛𝑣
𝛥𝑡

)

−

𝑑𝑖𝑣
(

𝜌𝑙
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑 (𝑝) − 𝜌𝑙 𝑔 𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1,𝑗

−𝜌𝑛+1,𝑗𝑙 𝑞 + (𝑞𝑛𝑛𝑐 )𝑛+1,𝑗 = 𝑅𝑛+1,𝑗𝑚 .

(36)

From linear poroelasticity (in engineering convention, where tensile
stresses and strains are positive):

𝜎𝑣 + 𝛼𝑝 = 𝐾𝑑𝑟𝜖𝑣. (37)

In discretized form:

𝜎𝑛+1,𝑗−1𝑣 + 𝛼𝑝𝑛+1,𝑗−1 = 𝐾𝑑𝑟𝜖
𝑛+1,𝑗−1
𝑣 , (38)

𝜎𝑛𝑣 + 𝛼𝑝
𝑛 = 𝐾𝑑𝑟𝜖

𝑛
𝑣 . (39)

Therefore, Eq. (36) can be written as:

𝑉𝑏𝜌
𝑛+1,𝑗
𝑙

[

𝜙𝑚𝑐𝑙 +

(

𝛼 − 𝜙𝑚
)

𝐾𝑠
+ 𝛼2

𝐾𝑑𝑟

]𝑛+1,𝑗
(

𝑝𝑛+1,𝑗 − 𝑝𝑛

𝛥𝑡

)

+𝑉𝑏𝜌
𝑛+1,𝑗
𝑙

𝛼
𝐾𝑑𝑟

(

𝐾𝑑𝑟𝜖
𝑛+1,𝑗−1
𝑣 − 𝛼𝑝𝑛+1,𝑗−1 −𝐾𝑑𝑟𝜖𝑛𝑣 + 𝛼𝑝

𝑛

𝛥𝑡

)

−

𝑑𝑖𝑣
(

𝜌𝑙
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑 (𝑝) − 𝜌𝑙𝑔𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1,𝑗

−𝜌𝑛+1,𝑗𝑙 𝑞 + (𝑞𝑛𝑛𝑐 )𝑛+1,𝑗 = 𝑅𝑛+1,𝑗𝑚 .

(40)

Considering that volumetric strain is the sum of the diagonal entries in
the strain tensor, it is given as:

𝜖𝑣 =
[

𝜖𝑥 𝜖𝑦 𝜖𝑥𝑦
]

[1 1 0]𝑇 . (41)

Defining vector m as [1 1 0]𝑇 , the volumetric strain can be written in
terms of Eq. (A.8) as:

𝑇 𝑇
𝜖𝑣 = (𝐵 𝑚) 𝑈, (42)
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where 𝐵 =
[

𝐵𝑠𝑡𝑑 (𝑥) 𝐵𝑒𝑛𝑟 (𝑥)
]

in Eq. (A.8). Substituting Eqs. (41) and
(42) into Eq. (40) yields:

𝑉𝑏𝜌
𝑛+1,𝑗
𝑙

[

𝜙𝑚𝑐𝑙 +

(

𝛼 − 𝜙𝑚
)

𝐾𝑠

]𝑛+1,𝑗

𝑝𝑛+1,𝑗 + 𝑉𝑏𝜌
𝑛+1,𝑗
𝑙

[

𝛼2

𝐾𝑑𝑟

]𝑛+1,𝑗
𝑝𝑛+1,𝑗

−𝑉𝑏𝜌𝑛𝑙

[

𝜙𝑚𝑐𝑙 +

(

𝛼 − 𝜙𝑚
)

𝐾𝑠

]𝑛

𝑝𝑛

+𝑉𝑏𝜌
𝑛+1,𝑗−1
𝑙 𝛼(𝐵𝑇𝑚)𝑇 𝑢𝑛+1,𝑗−1 − 𝑉𝑏𝜌𝑛𝑙 𝛼 (𝐵𝑇𝑚)𝑇 𝑢𝑛

−𝑉𝑏𝜌
𝑛+1,𝑗−1
𝑙

[

𝛼2

𝐾𝑑𝑟

]𝑛+1,𝑗−1
𝑝𝑛+1,𝑗−1

−𝛥𝑡 𝑑𝑖𝑣
(

𝜌𝑙
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑 (𝑝) − 𝜌𝑙𝑔𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1,𝑗

−
(

𝜌𝑙𝑞
)𝑛+1,𝑗
𝑚 𝛥𝑡 + (𝑞𝑛𝑛𝑐 )𝑛+1,𝑗 𝛥𝑡 = 𝑅𝑛+1,𝑗𝑚 .

(43)

The discretized fracture flow Eq. (32) is implicitly a function of the
matrix displacement because the fracture bulk volume is the product of
the thickness, aperture, and length of each fracture cell at the current
time step (𝑛 + 1) and current non-linear iteration, 𝑗. This aperture is
obtained from the XFEM solution for the enriched displacements. In
contrast, we obtain the length of the propagating fracture cell from the
fracture propagation model presented in the next section. Considering
the negligible volume of the fracture in comparison to the matrix, the
change in the fracture volume is captured via its specification at the
current time step and current non-linear iteration. It is written as:

𝑉 𝑛+1,𝑗
𝑏,𝑓 𝑐𝑙

(

𝜌𝑙𝜙𝑓
)𝑛+1,𝑗 (𝑝𝑛+1,𝑗𝑓 − 𝑝𝑛𝑓 )

−𝛥𝑡 𝑑𝑖𝑣
(

𝜌𝑙
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑
(

𝑝𝑓
)

− 𝜌𝑙 𝑔 𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1,𝑗

𝑓

−
(

𝜌𝑙𝑞
)𝑛+1,𝑗
𝑓 − (𝑞𝑛𝑛𝑐 )𝑛+1,𝑗𝑓 𝛥𝑡 = 𝑅𝑛+1,𝑗𝑓 ,

(44)

We can define a pressure vector, 𝑝, which combines the matrix pressure
𝑝𝑚 and fracture pressure 𝑝𝑓 as follows:

𝑝 =
{

𝑝𝑚
𝑝𝑓

}

. (45)

Assuming that the fluid density in the matrix and fracture is constant,
we can rewrite the combined discretized flow equations for the matrix
and fracture in matrix form as:
(

𝐶𝑠 + 𝑆 − 𝑇𝛥𝑡
)

𝑝𝑛+1,𝑗 ≈ 𝐶𝑠𝑝
𝑛 +𝑄

(

𝑢𝑛+1,𝑗−1 − 𝑢𝑛
)

+ 𝑆𝑝𝑛+1,𝑗−1 + 𝑓𝑙𝛥𝑡, (46)

here,

𝑠 = 𝑉𝑏

(

𝜙𝑚𝑐𝑙 +
𝛼 − 𝜙𝑚
𝐾𝑠

)

(𝑓𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥),

𝐶𝑠 = 𝑉𝑏𝜙𝑓 𝑐𝑙 (𝑓𝑜𝑟 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒),
(47)

= 𝑉𝑏

(

𝛼2

𝐾𝑑𝑟

)

(𝑓𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥), 𝑆 = 0 (𝑓𝑜𝑟 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒), (48)

𝑄 = 𝛼(𝐵𝑇𝑚)𝑇 (for matrix), (49)

𝑝 = 𝑑𝑖𝑣
(

1
𝜇

[

𝑇 −1
𝑖,𝑘 + 𝑇 −1

𝑘,𝑖

]−1
[

𝑔𝑟𝑎𝑑 (𝑝) − 𝜌𝑙 𝑔 𝑔𝑟𝑎𝑑 (𝑧)
]

)𝑛+1,𝑗
± (𝑞𝑛𝑛𝑐 )𝑛+1,𝑗 ,

(50)

𝑓𝑙 = 𝑞. (51)

Note that the displacements are solved at the nodes or vertices of
the matrix cells (using XFEM), while the pressure solutions (from
FVM) are obtained at the cell centroids. This explains why the Q term
in Eq. (46) is based on the finite element method, whereas the other
terms are based on the finite volume discretization of the flow equation.
Additionally, the use of 𝑝𝑚 in Eq. (50) to account for the fact that we
need to add the 𝑞𝑛𝑛𝑐 term to the matrix flow equation but subtract it
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from the fracture flow equation. This ensures the conservation of mass
as fluid is exchanged between the matrix and fracture. We can rewrite
the matrix form of the discretized linear momentum balance Eq. (A.23)
in a more compact form as:

𝐾𝑢𝑛+1,𝑗 = 𝑏𝑚 +𝑄𝑇 𝑝𝑛+1,𝑗−1, (52)

where the element stiffness matrix (K) is given as:

𝐾 =
[

𝐾𝑢𝑢 𝐾𝑢𝑎
𝐾𝑎𝑢 𝐾𝑎𝑎

]

, (53)

the displacement vector containing both the standard and enriched
displacements (u) is given as:

𝑢 =
{

𝑈
𝐴

}

, (54)

and the right-hand side is given as:

𝑏𝑚 =
{

𝐹𝑢
𝐹𝑎

}

. (55)

The two systems of equations to be solved sequentially in the fixed-
stress splitting approach are Eqs. (46) and (52). Eq. (46) is first solved
for 𝑝𝑛+1,𝑗 , after which this pressure solution is set to 𝑝𝑛+1,𝑗−1, and used
to find the displacement at the current time step (n+1) and current
fixed-stress iteration j in Eq. (52). This displacement 𝑢𝑛+1,𝑗 is then set
to 𝑢𝑛+1,𝑗−1 and used in the next calculation of pressure 𝑝𝑛+1,𝑗 in Eq. (46).
This fixed-stress loop is continued until we converge on a solution for
pressure and displacement. The algorithm is summarized in the first six
steps of the flow chart presented in Fig. 1.

4.1. Modeling of fracture propagation

As shown in Fig. 1, this work involves the modeling of fracture
propagation using linear elastic fracture mechanics, where a fracture
propagates if the stress intensity factor exceeds the critical stress in-
tensity factor. I use the J-integral to compute the strain energy release
rate (or work /energy per unit fracture surface area) of a material. For
isotropic linear elastic materials, the J-integral can be directly related
to the fracture toughness as (Rice, 1968):

𝐽 = ∫𝛤

(

𝑊 𝑑𝑦 − 𝑡 ⋅ 𝜕𝑢
𝜕𝑥
𝑑𝑠

)

, (56)

where 𝑊 (𝑥, 𝑦) is the strain energy density, t is the surface traction
vector, and u is the displacement vector. The J integral can be related to
stress intensity factor as follows (for mode I plane strain model) (Rice,
1968) :

𝐽𝐼 = 𝐾𝐼
2
(

1 − 𝜈2
)

𝐸
. (57)

For mode II, the J integral is given as (Yoda, 1980):

𝐽𝐼𝐼 = 𝐾𝐼𝐼
2
(

1 − 𝜈2
)

𝐸
. (58)

Here, 𝜈 is the Poisson’s ratio and E is the Young’s modulus of the
material. To determine the direction of fracture propagation, we cal-
culate the propagation angle using the maximum circumferential stress
criterion as follows (Khoei, 2014):

𝜃𝑐 = 2𝑡𝑎𝑛−1 1
4

⎛

⎜

⎜

⎝

𝐾𝐼
𝐾𝐼𝐼

− 𝑠𝑖𝑔𝑛
(

𝐾𝐼𝐼
)

√

(

𝐾𝐼
𝐾𝐼𝐼

)2
+ 8

⎞

⎟

⎟

⎠

(59)

o find the propagation length we use the secant method as in Zeng
t al. (2018). This is a two-step iterative procedure, which is used to
alculate propagation length based on two prescribed initial guesses as
ollows:

𝑙 = 𝑙202 −
𝑓
(

𝑙02
) (

𝑙02 − 𝑙01
)

( ) ( ) . (60)

𝑓 𝑙02 − 𝑓 𝑙01
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Fig. 1. Algorithm for coupled flow and geomechanics using the fixed-stress approach.
Here, 𝛿𝑙 is the propagation length and 𝑙01 and 𝑙02 are two initial guesses
for propagation length. The stress intensity factor is calculated in this
process as a function of the propagation length:

𝑓 (𝛿𝑙) = 𝐾𝐼 −𝐾𝐼𝑐 = 0, (61)

where 𝐾𝐼 is the stress intensity factor calculated using the J integral as
a function of propagation length, and 𝐾𝐼𝑐 is the critical stress intensity
factor, which is a material property. As indicated in Fig. 3, the solver for
the fracture propagation iteratively evaluates the stress intensity factor
as a function of the fracture propagation length until convergence is
achieved.

This section focuses on the verification of our numerical simulation
model by comparing the model results against published analytical
solutions in the literature. To validate the coupled flow and defor-
mation model, we present comparisons of our simulation results to
the Terzaghi’s one-dimensional (1D) consolidation problem (Terzaghi
et al., 1996) and the two-dimensional (2D) Mandel problem (Mandel,
1953). We then present the simulation results from a simulation of fluid
injection into a crack which is not allowed to propagate to evaluate the
accuracy of the numerical model in predicting the opening of the crack.
Next, we validate the modeling of crack opening by applying tensile
forces on the boundary of a domain with an initial crack. Given the
accurate match of all these cases against published analytical solutions,
we proceed to model a case with a hydraulic fracture in the middle of
two long sealing natural fractures to illustrate the importance of using
pEDFM instead of EDFM in low-conductivity fractures. We conclude
this paper with a model of a case with coupled flow, geomechanics,
fracture propagation and opening, which is compared against published
analytical solutions.
7

4.2. The Terzaghi problem

The iteratively coupled flow and deformation model developed is
validated with the Terzaghi 1D consolidation problem. The physical
model shown in Fig. 2(a) consists of a homogeneous porous formation
that is subjected to a constant load, 𝜎 at the top. We only model half
of the height of the domain because of symmetry, so we applied a no-
flow boundary condition at the bottom and side of the sample while
the top is fully drained. The displacements are fixed at the bottom
and the roller boundary condition is applied on both vertical sides.
Table 1 summarizes the model parameters used in the analytical and
numerical simulation of the Terzaghi’s problem. Fig. 2(b) shows that
Our numerical simulation results match the analytical solution very
closely. Each curve in this figure corresponds to the pressure profile
at an instance in time. The results show that the pressure builds up
instantaneously when the load is applied at time, t = 0, but as time
evolves, the pressure dissipates due to the flow of fluid out of the top
and bottom faces of the full domain with height, 2 h.

4.3. The Mandel problem

The Mandel problem involves modeling the non-monotonic pres-
sure variation expected when a poroelastic material is subjected to
a constant vertical load and allowed to drain on its lateral sides, as
shown in Fig. 3. We simulate the top right quarter of the domain (due
to symmetry) as shown in Fig. 3(b). The flow boundary conditions
are such that the right side is drained with a constant pressure of
zero whereas all other three sides are modeled as no-flow boundaries.
The mechanical boundary conditions used in this quarter domain are
shown in the Fig. 3(b). We modeled the top as a rigid motion boundary



Journal of Petroleum Science and Engineering 214 (2022) 110468H. Rashid et al.
Fig. 2. Image shows the sketch of the description of the Terzaghi problem on the left and the comparison of pressure profile with the analytic solution on the right.
Fig. 3. Sketch of the description of the Mandel problem (Left). Sketch of simulation domain with boundary conditions (Right).
Table 1
Input parameters for the Terzaghi’s problem.
Input data Value Unit

Number of grid 1 × 49 × 1 –
Physical domain dimensions 1 × 45 × 1 m
Porosity 0.25 –
Permeability 50 × 10−15 m2

Young’s modulus 1 × 106 Pa
Poisson’s ratio 0.2 –
Biot’s coefficient 1 –
Overburden pressure 20 × 103 Pa
Fluid viscosity 1×10−3 pa − s
Fluid compressibility 4 × 10−10 1∕Pa
Initial Pressure 1 × 107 Pa

condition by computing the Y-component of displacement (uy) which
maintains a deformation equal to the analytic deformation at the nodes
on the top surface of the simulation domain, as in Chukwudozie (2016).
The deformation of the sample should be confined to the plane strain
conditions, so that no deformation is allowed in the direction normal
to the plane shown in 3. Verruijt (2013) discusses the Mandel problem
in more detail, and provides the analytical solution, which was first
presented by Mandel (1953).

Table 2 summarizes all the model parameters used in the analytical
and numerical simulation of the Mandel problem. Fig. 4 provides
a comparison of our numerical simulation results to the analytical
solution. It shows that our model can capture the Mandel–Cryer effect,
8

Table 2
Input parameters for the Mandel problem.
Input data Value Unit

Number of grid 50 × 25 × 1 –
Physical domain dimensions 10 × 5 × 1 m
Porosity 0.2 –
Permeability 5 × 10−13 m2

Young’s modulus 1 × 106 Pa
Poisson’s ratio 0.2 –
Biot’s coefficient 1 –
Overburden pressure 2.5 × 106 Pa

where the pressure at the middle of the sample first rises before even-
tually declining to the zero-pore pressure value specified at the lateral
boundaries, as in Fig. 4(a). This explains the observed non-monotonic
pressure variation in both the analytical and numerical solutions.

4.4. Crack evolution due to injection

Having verified the ability of our coupled flow and geomechanics
model to reproduce known analytical solutions, we proceed to validate
its accuracy when strong discontinuities like fractures or faults are
present in the domain. In this subsection, we simulate fluid injection
into a fracture in the middle of the rectangular domain shown in Fig. 5.
All four boundaries of the domain are modeled as a pin boundary
condition (that is, all components of the displacement vector are set
to zero). We summarize the model parameters used in Table 3. To
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Fig. 4. Comparison of the pressure profile with Mandel’s analytical solution at the middle of the full domain (Left), and along the length from the center of the full domain to
the right boundary (Right).
Table 3
Input parameters for the crack evolution problem.
Input data Value Unit

Number of grid 50 × 50 × 1 –
Physical domain dimensions 50 × 50 × 1 m
Matrix porosity 0.2 –
Matrix permeability 9.87 × 10−20 m2

Young’s modulus 20 × 109 Pa
Poisson’s ratio 0.25 –
Biot’s coefficient 1 –
Overburden pressure 2.5 × 106 Pa
Initial fracture length 3 m

obtain the results in Fig. 5(b), We specify the injection volume by
injecting at a fixed rate. The simulated pressure in the fracture cells are
then averaged and plotted against the injection volume. Chukwudozie
(2016) extended the analytical solution from Sneddon and Lowengrub
(1969) to account for quasi-static crack evolution under an injected
fluid volume with no fluid loss to the formation, as follows:

𝑝 =
𝐸′𝑉𝑖𝑛𝑗
2𝜋𝐿2

0

+ 𝜎𝑚𝑖𝑛. (62)

Here, p is the injected fluid pressure, 𝐿0 is initial fracture length, 𝜎𝑚𝑖𝑛
is the minimum in-situ stress, 𝑉𝑖𝑛𝑗 is the injected fluid volume, and 𝐸′
can be defined as:

𝐸′ = 𝐸
1 − 𝜈2

, (63)

where, E and 𝜈 are Young’s modulus and Poisson’s ratio of the material,
respectively. Eq. (62) shows a linear relationship between the injection
pressure and volume at constant fracture length. Here, we only model
the opening of the crack (that is, increasing aperture) but do not allow
the fracture to propagate (no increase in the fracture length). Fig. 5(b)
shows the comparison of the fracture pressure obtained from the use
of the cubic law and the porous media approach for modeling flow in
fractures. It shows that the fracture pressure increases linearly in both
cases as the injection volume increases. However, the porous media
approach overestimates the pressure as it considers the fracture as a
porous medium instead of a parallel plate. The increase of porosity
value bring the numerical solution closer to the analytical pressure.
However, it still fails to match even in 100% porosity value. Therefore
we conclude, it is important to model open or unpropped fractures with
the cubic law.

4.5. Center crack under uniform tension

In this subsection, we validate our extended finite element model
by simulating the opening of a pre-existing crack by applying tensile
9

Table 4
Input parameters for the simulation of a crack under tension.
Input data Value Unit

Number of grid 50 × 50 × 1 –
Physical domain dimensions 5 × 5 × 1 m
Young’s modulus 20 × 109 Pa
Poisson’s ratio 0.25 –
Biot’s coefficient 1 –
Initial fracture length 1.1 m
Applied tension load 1 × 106 Pa

stresses at the two opposite boundaries of the domain, as shown in
Fig. 6(a). We validate our simulation results against the analytical
solution presented by Janssen et al. (2006). This analytical solution
relates the fracture opening to the applied tension as follows:

𝑤𝑓 = 2𝑇
𝐸

√

(

𝐿0
2

)2
− 𝑥2. (64)

Here, 𝑤𝑓 is the fracture aperture at point x, while 𝑇 is the ten-
sion applied on the top and bottom surfaces of the material. Table 4
summarizes the input parameters used while Fig. 6(b) compares our
simulation results to the analytical solution. The plot shows that the
simulation results (red circle) match the analytical solution (black line),
which indicates the accuracy of our simulation model in estimating
fracture opening under tensile stresses. The next subsection discusses
the modeling of fracture opening because of fluid injection.

4.6. Verification of fracture propagation

The problem modeled in this section involves the injection of water
into a pre-existing crack in the middle of a 2D domain shown in Fig. 7.
Table 5 shows the parameters used in the numerical simulation and
analytical models. The analytical solution for volume-driven fracture
propagation from Sneddon and Lowengrub (1969) is given as:

𝛥𝑙 =
(

𝐸′𝑄2

4𝜋 𝐺𝑐

)1∕3
. (65)

Here, Q is the injection volume in 𝑚3, 𝐺𝑐 is the fracture toughness in
Pa-m, and 𝛥𝑙 is the fracture propagation length. The fracture pressure
(𝑝𝑓 ) can be calculated using the following equation:

𝑝𝑓 =

(

𝐺𝑐𝐸′

𝜋 𝑙20

)1∕2

, (66)

where, 𝑙0 is the initial fracture length. Fig. 8 shows the comparison of
our numerical simulation results to this analytical solution. The plot
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Fig. 5. This figure shows the simulation domain for the analysis of fracture opening due to injection (Left) and the comparison of pressure profile based on the cubic law and
porous-medium formulation to the analytical solution (Right).
Fig. 6. A square plate with a pre-existing crack in the center (left). Crack opening comparison with analytical solution (Right).
of fracture pressure shows a linear increase with increasing injection
volume until the volume reaches a critical value of 5 × 10−5𝑚3. Beyond
this volume, the fracture pressure drops as the fracture propagates, and
its length increases as shown in Fig. 8(b). The plots of both fracture
pressure and change in fracture length against injection volume shows
a good match with the analytical solution.

5. Applications

5.1. Fracture opening at low fracture conductivity values

In this subsection, we focus on the application of our simulation
model in reservoirs with low-conductivity fractures. This is important
because EDFM is unable to model these kinds of fractures accurately,
as discussed in the introduction. Additionally, the deposition of fine
sands and cementing materials into fractures leads to the cementation
of fractures and a subsequent reduction in fracture conductivity. This
10
Fig. 7. Sketch of the simulation domain for fracture propagation.
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Fig. 8. Left plot shows the validation of the simulated fracture pressure against the analytical solution, whereas the right plot shows the validation of the simulated fracture length
against the analytical solution.
Table 5
Input parameters for fracture propagation validation.
Input data Value Unit

Number of Grid 50 × 50 × 1 –
Physical domain dimensions 5 × 5 × 1 m
Young’s modulus 20 × 109 Pa
Poisson’s ratio 0.2 –
Biot’s coefficient 1 –
Initial fracture length 0.6 m
Critical stress intensity factor 2039 Pa

√

m
Injection rate 1 × 10−5 m3∕s
Fluid viscosity 1 × 10−3 pa − s
Matrix permeability 9.8692 × 10−20 m2

Matrix porosity 0.2 –

Fig. 9. This figure illustrates our simulation domain for the injection case. It shows a
system with three fractures, where the conductive hydraulic fracture is in the middle
of two sealing fractures.

(coupled with the orientation of fractures relative to that of the pre-
vailing stress states) explains the common presence of low-conductivity
fractures in unconventional reservoirs. To demonstrate that pEDFM is
more appropriate than EDFM for modeling low-conductivity fractures,
We simulate a reservoir with a high-conductivity fracture in the middle,
and one low-conductivity fracture on each side of the middle fracture,
as shown in Fig. 9. Table 6 shows the parameters used in this study.
We inject fluid into the fracture in the center and calculate its change
in fracture aperture with time. We compare our pEDFM-XFEM model
results to those from an EDFM-XFEM model. The EDFM pressure profile
on the left of Fig. 10 does not show the expected sealing effect of
the two hydraulic fractures. Instead, its pressure front evolves through
the domain with no restriction along its path. However, the pEDFM
pressure profile on the right of the figure shows that the evolution of
the pressure profile is curtailed by the sealing fractures on either side
of the conductive fracture, as expected.

Figs. 11 and 12 show the corresponding difference in the X and Y
components of the displacement vector for EDFM (left) and pEDFM
(right). Both figures show that the extent of the deformation of the
11
Table 6
Input parameters for fracture opening at low-conductivity values.

Input data Value Unit

Number of Grid 50 × 50 × 1 –
Physical domain dimensions 50 × 50 × 1 m
Young’s modulus 20 × 109 Pa
Poisson’s ratio 0.2 –
Biot’s coefficient 1 –
Conductive fracture length 10 m
Sealing fractures lengths 14 m
Injection rate 1 × 10−6 m3∕s
Fluid viscosity 1 × 10−3 pa − s
Matrix permeability 9.8692 × 10−14 m2

Matrix porosity 0.2 –
Sealing fracture permeability 9.8692 × 10−22 m2

Spacing between conductive and sealing fracture 1.75 m

material in the pEDFM model is smaller than in the EDFM model
because of the sealing effect of the low-conductivity fractures. Fig. 13
compares the simulated fracture aperture from both models and indi-
cates that the coupling of the EDFM and XFEM models underestimate
fracture opening when compared with the pEDFM-XFEM modeling of
the fractured well. The magnitude of this underestimation of fracture
aperture is expected to increase as the fracture conductivity decreases
and as the number of such sealing fractures (in the domain) increases.
This will consequently lead to errors in the simulated production from
such fractured reservoirs.

5.2. Fracture propagation in the presence of natural fractures

This subsection uses the coupled pEDFM-XFEM model to simulate
the propagation of a hydraulic fracture in the presence of a pre-existing
or natural fracture. Here, we placed a sub-vertical natural fracture
in the vicinity of hydraulic fracture as shown in Fig. 14. The model
parameters used in this analysis are outlined in Table 7. To evaluate the
effect of the conductivity of the natural fracture on its interaction with
the propagating fracture, we varied the natural fracture permeability
from 10 nD to 100 mD.

To obtain the three simulation results shown in Figs. 15 and 16,
the fracture permeabilities were set to 10 nD, 100 𝜇D, and 100 mD for
cases (a), (b), and (c), respectively. These figures show three distinct
behaviors when the propagating fracture intersects the natural fracture.
In Fig. 16(a) the hydraulic fracture propagates through the natural
fracture without an observable change in the natural fracture pressure.
This indicates that there is little or no leak-off of the injected fluid
through this intersecting natural fracture. In contrast, Fig. 16(b) shows
that the hydraulic fracture propagates through the natural fracture with
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Fig. 10. Comparison of pressure (in 𝑃𝑠𝑖𝑎) profile for EDFM (left) and pEDFM (right).
Fig. 11. Comparison between EDFM (left) and pEDFM (right) displacement profiles (in meters) in the 𝑥 direction (𝐮𝐱).
Fig. 12. Comparison between EDFM (left) and pEDFM (right) displacement profiles (in meters) in the Y direction (𝐮𝐲).
an observable increase in the natural fracture pressure. This pressure
increase consequently indicates an observable fluid leak-off through
the natural fracture. Finally, Fig. 16(c) indicates that the fluid leak-
off is so high that the propagating hydraulic fracture gets ‘‘arrested’’,
and is unable to propagate across the natural fracture. The flow of the
injected fluid into the natural fracture disperses the pressure that was
previously concentrated in the hydraulic fracture, resulting in a lower
pressure, which is unable to sustain the propagation of the hydraulic
fracture.

Fig. 17 shows the change of fracture pressure with time in the
presence of a natural fracture with different conductivity values. The
legend shows the different natural fracture permeability values, as
well as a case in which the natural fracture is absent. The vertical
magenta line indicates the time at which the propagating hydraulic
fracture intersects the natural fracture. The results show that at a
natural fracture permeability of less than 10𝜇D, the hydraulic fracture
12
propagates without observable fracture pressure changes. At natural
fracture permeability values between 10𝜇D and 1 mD, we observe
two trends in the pressure profile after the hydraulic fracture inter-
sects the natural fracture. The initial increase in pressure corresponds
to the duration where the hydraulic fracture stops propagating, and
pressure builds up in the natural fracture. In contrast, the subsequent
decline in fracture pressure indicates that the fracture resumes its
propagation. Finally, when the fracture permeability is above 1̃00 mD,
the increase in pressure observed indicates that the fracture stops
propagating while the fracture pressure builds up. Fig. 18 illustrates
the effect of the natural fracture conductivity on the aperture of the
propagating hydraulic fracture. The point where these curves intersect
the 𝑋-axis corresponds to the hydraulic fracture length. These results
show that the hydraulic fracture aperture decreases as the natural
fracture conductivity increases.
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Fig. 13. Comparison of fracture opening. EDFM underestimates fracture opening in the
presence of sealing fractures.

Table 7
Input parameters for hydraulic fracture propagation in the presence of
a natural fracture case.
Input data Value Unit

Number of grids 51 × 51 × 1 –
Physical domain dimensions 5.1 × 5.1 × 1 m
Young’s modulus 20 × 109 Pa
Poisson’s ratio 0.2 –
Biot’s coefficient 1 –
Initial hydraulic fracture length 0.75 m
Initial hydraulic fracture aperture 1 × 10−6 m
Initial natural fracture length 2.75 m
Initial natural fracture aperture 1 × 10−6 m
Injection rate 1 × 10−6 m3∕s
Fluid viscosity 1 × 10−3 Pa − s
Matrix permeability 9.8692 × 10−22 m2

Matrix porosity 0.2 –

Fig. 14. Initial location of hydraulic and natural fractures before fluid injection.

5.3. Computational efficiency of the proposed numerical model

This subsection summarizes the computational performance of the
proposed model on a 10-core Intel(R) Core (TM) i9-9820X CPU 3.31 GHz
with 64 GB RAM. A total of 30 time steps were simulated in the fracture
opening and propagation cases as shown in Fig. 19. The fracture
propagation simulations ran for an average of 125 s, with 74% of the
time spent in the propagation solver. The heights of the red, blue,
purple, and green bars in Fig. 19 correspond to the number of non-
linear iterations taken before convergence in the cases presented in
Figs. 5, 9, 8 and 14 respectively.
13
6. Conclusions

This work provides the first demonstration of the iterative coupling
of pEDFM with XFEM to model hydraulic fracture propagation in natu-
rally fractured reservoirs, such as unconventional oil and gas reservoirs.
We used the fixed-stress splitting scheme to ensure the efficient and
accurate modeling of the flow and mechanical deformation and fracture
propagation in these fractured tight rocks. The use of pEDFM instead of
EDFM allows modeling the interaction between hydraulic and natural
fractures of any conductivity.

To demonstrate the accuracy of the proposed approach, we simu-
lated several standard problems with known analytical solutions. We
verified our coupling of flow and geomechanics by comparing our
numerical simulation results to the analytical solutions of the Terzaghi
and Mandel problems. We also simulated fracture opening and prop-
agation and compared our model results to the published analytical
solutions of Janssen et al. (2006) and Sneddon and Lowengrub (1969),
respectively. All of these verification cases show an excellent match
against published analytical solutions.

Using the proposed pEDFM-XFEM and an EDFM-XFEM model,
we simulated a high-conductivity fractured well between two low-
conductivity natural fractures to show the importance of modeling
low-conductivity fractures accurately. The results show that EDFM-
XFEM underestimates the fracture aperture and cannot model the
displacement and pressure profiles accurately in reservoirs with low-
conductivity fractures. Additionally, the comparison of the simulation
results based on the cubic law, as well as that based on the common
porous-medium assumption, to the analytical solutions from Sneddon
and Lowengrub (1969) indicates that the common use of the latter
could be inaccurate for flow in unpropped fractures. Finally, our
simulation of the interaction between a propagating hydraulic fracture
and a pre-existing natural fracture with different fracture permeability
values indicates the role of the natural fracture conductivity in the
interaction between both fractures.
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Appendix. Discretization of the linear momentum balance equa-
tion with XFEM

To account for the presence of discontinuities in the domain, we use
the following form of the divergence theorem, which accounts for these
interior boundaries within the domain Khoei (2014):

∫𝛺
∇ ⋅ 𝐹 𝑑𝛺 = ∫𝛤

𝐹 ⋅ 𝑛𝛤 𝑑𝛤 − ∫𝛤𝑑

(

𝐹+ − 𝐹−) ⋅ 𝑛𝛤𝑑 𝑑𝛤 , (A.1)

where 𝐹 is any continuous function in the domain, whereas 𝛤 and 𝛤𝑑
represent the exterior and interior boundary surfaces of the domain, as
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Fig. 15. Fracture location at the end of the simulation. In (a) and (b), the hydraulic fracture propagates through the natural fracture, whereas in (b) the propagating hydraulic
fracture is ‘‘arrested’’ by the natural fracture.
Fig. 16. The images show the pressure profile at the end of simulation. In (a), the hydraulic fracture propagates across the natural fracture without an observable change in the
natural fracture pressure. In (b), the hydraulic fracture propagates through the natural fracture with an observable change in the natural fracture pressure. In (c), the propagating
hydraulic fracture is ‘‘arrested’’ by the natural fracture.
Fig. 17. Comparison of fracture pressures at different natural fracture conductivity
values.

shown in Fig. A.1. Expanding Eq. (33) and applying this form of the
divergence theorem yields:

∫𝛺
∇𝑣 ∶ 𝜎𝑑𝛺+∫𝛤𝑑

(

𝑣±𝑣−
)

⋅𝜎 ⋅𝑛𝛤𝑑 𝑑𝛤 −∫𝛤
(𝑣 ⋅ 𝜎) ⋅𝑛𝛤 𝑑𝛤 −∫𝛺

𝑣 ⋅ 𝑏𝑑𝛺 = 0.

(A.2)

As in Khoei (2014), we impose the internal boundary condition on the
discontinuity and substitute

(

𝑣±𝑣−
)

= [[𝑣]] to obtain:

∇𝑣 ∶ 𝜎𝑑𝛺+ [[𝑣 ⋅ 𝜎]] ⋅ 𝑛Γd 𝑑𝛤 − 𝑣 ⋅ 𝑡⃗𝑑𝛤 − 𝑣 ⋅ 𝑏𝑑𝛺 = 0, (A.3)
14

∫𝛺 ∫𝛤𝑑 ∫𝛤 ∫𝛺
Fig. 18. Effect of natural fracture on fracture opening.

where the traction vector, 𝑡 acts normal to the boundary (𝛤 ). In the
presence of fracture fluid, the second integral can be evaluated for
strong discontinuities by imposing the internal boundary condition as
follows:

∫𝛤𝑑
[[𝑣 ⋅ 𝜎]] ⋅ 𝑛𝛤𝑑 𝑑𝛤 = ∫𝛤𝑑

[[𝑣 ]] (𝜎 ⋅ 𝑛𝛤𝑑 ) 𝑑𝛤 = ∫𝛤𝑑
[[𝑣 ]] (−𝑝 ⋅ 𝑛𝛤𝑑 )𝑑𝛤 ,

(A.4)

where, 𝑝 is the pressure inside the discontinuity. Substituting Eq. (A.4)
into Eq. (A.3) yields:

∇𝑣 ∶ 𝜎𝑑𝛺− [[𝑣 ]] (𝑝 ⋅ 𝑛𝛤𝑑 ) 𝑑𝛤 − 𝑣 ⋅ 𝑡⃗𝑑𝛤 − 𝑣 ⋅ 𝑏𝑑𝛺 = 0. (A.5)
∫𝛺 ∫𝛤𝑑 ∫𝛤 ∫𝛺
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Fig. 19. Plot of the number of non-linear (fixed-stress) iteration against the time-
step number indicates that the scheme converges after an average of 7.5 non-linear
iterations.

To discretize this integral equation, we use XFEM, which enriches the
standard finite element basis functions with Heaviside step functions
(for crack surfaces) and asymptotic functions (for the crack tips).
Considering the displacement field of an enriched element, u(x,t), the
enriched approximation field can be expressed as:

𝑢 (𝑥, 𝑡) =
𝑛
∑

𝑖=1
𝑁𝑖 (𝑥)𝑈𝑖 +

𝑚
∑

𝑗=1
𝑁𝑗 (𝑥)

(

𝜓 (𝑥) − 𝜓
(

𝑥𝑗
))

𝐴𝑗

≡ 𝑁𝑠𝑡𝑑 (𝑥)𝑈 +𝑁𝑒𝑛𝑟 (𝑥)𝐴, (A.6)

where, 𝑈𝑖 represents the standard FEM displacement at the nodes,
and 𝐴𝑗 represents the corresponding displacement (or jump) which is
calculated using the enriched functions. 𝑁𝑖 and 𝑁𝑗 are the standard and
enriched shape functions, respectively, whereas 𝜓 is the shifted enrich-
ment function used in the enhanced approximation field. Similarly, the
test function 𝑣(𝑥, 𝑡) can be defined in the same approximate space as
the displacement field:

𝑣 (𝑥, 𝑡) =
𝑛
∑

𝑖=1
𝑁𝑖 (𝑥)𝑉𝑖 +

𝑚
∑

𝑗=1
𝑁𝑗 (𝑥)

(

𝜓 (𝑥) − 𝜓
(

𝑥𝑗
))

𝑊𝑗

≡ 𝑁𝑠𝑡𝑑 (𝑥)𝑉 +𝑁𝑒𝑛𝑟 (𝑥)𝑊 , (A.7)

where 𝑁𝑠𝑡𝑑 is a vector with elements 𝑁𝑖 (𝑥), and 𝑁𝑒𝑛𝑟 is a vector
with elements 𝑁𝑗 (𝑥)

(

𝜓 (𝑥) − 𝜓
(

𝑥𝑗
))

. In terms of the standard and
enriched forms of the approximate displacement field, the strain vector
is essentially the gradient of the standard and enriched displacement
vector, and is given as:

𝜖 (𝑥, 𝑡) =
𝑛
∑

𝑖=1

𝜕𝑁𝑖
𝜕𝑥

𝑈𝑖 +
𝑚
∑

𝑗=1

[ 𝜕𝑁𝑗

𝜕𝑥
(

𝜓 (𝑥) − 𝜓
(

𝑥𝑗
))

]

𝐴𝑗

≡ 𝐵𝑠𝑡𝑑 (𝑥)𝑈 + 𝐵𝑒𝑛𝑟 (𝑥)𝐴 ≡
[

𝐵𝑠𝑡𝑑 (𝑥) 𝐵𝑒𝑛𝑟 (𝑥)
]

{

𝑈
𝐴

}

.

(A.8)

Similarly, the variation of strain field is the gradient of the test function,
(∇𝑣), and is given as:

∇𝑣 (𝑥, 𝑡) =
𝑛
∑

𝑖=1

𝜕𝑁𝑖
𝜕𝑥

𝑉𝑖 +
𝑚
∑

𝑗=1

[ 𝜕𝑁𝑗

𝜕𝑥
(

𝜓 (𝑥) − 𝜓
(

𝑥𝑗
))

]

𝑊𝑗

≡ 𝐵𝑠𝑡𝑑 (𝑥)𝑉 + 𝐵𝑒𝑛𝑟 (𝑥)𝑊 =
[

𝐵𝑠𝑡𝑑 (𝑥) 𝐵𝑒𝑛𝑟 (𝑥)
]

{

𝑉
𝑊

}

.

(A.9)

Here, 𝐵𝑠𝑡𝑑𝑖 and 𝐵𝑒𝑛𝑟𝑗 are the strain displacement matrices for the stan-
dard and enriched approximations, respectively. In 2D, they are defined
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as follows:

𝐵𝑠𝑡𝑑𝑖 =
⎡

⎢

⎢

⎣

𝜕𝑁𝑖∕𝜕𝑥 0
0 𝜕𝑁𝑖∕𝜕𝑦

𝜕𝑁𝑖𝜕𝑦 𝜕𝑁𝑖𝜕𝑥

⎤

⎥

⎥

⎦

(A.10)

𝐵𝑒𝑛𝑟𝑗 =
⎡

⎢

⎢

⎣

𝜕𝑁𝑗
[(

𝜓𝜕𝑥 − 𝜓
(

𝑥𝑗
))]

∕𝜕𝑥 0
0 𝜕𝑁𝑗

[(

𝜓𝜕 − 𝜓
(

𝑥𝑗
))]

∕𝜕𝑦
𝜕𝑁𝑗

[(

𝜓𝜕𝑥 − 𝜓
(

𝑥𝑗
))]

∕𝜕𝑦 𝜕𝑁𝑗
[(

𝜓𝜕𝑥 − 𝜓
(

𝑥𝑗
))]

∕𝜕𝑥

⎤

⎥

⎥

⎦

(A.11)

The discretized form of the extended finite element formulation can be
obtained by substituting Eqs. (A.7) and (A.9) into Eq. (A.5) to obtain:

∫𝛺

(

𝐵𝑠𝑡𝑑𝑉 + 𝐵𝑒𝑛𝑟𝑊
)𝑇 𝜎𝑑𝛺 − ∫𝛤𝑡

[[
(

𝑁𝑠𝑡𝑑𝑉 +𝑁𝑒𝑛𝑟𝑊
)𝑇 ]]𝑝 ⋅ 𝑛𝛤𝑑 𝑑𝛤

−∫𝛤𝑡

(

𝑁𝑠𝑡𝑑𝑉 +𝑁𝑒𝑛𝑟𝑊
)𝑇 𝑡⃗𝑑𝛤 − ∫𝛺

(

𝑁𝑠𝑡𝑑𝑉 +𝑁𝑒𝑛𝑟𝑊
)𝑇 𝑏 𝑑𝛺 = 0

(A.12)

Substituting the definition of strain in Eq. (A.8) into Hooke’s law yields:

𝜎′ = 𝐶
[

𝐵𝑠𝑡𝑑𝑈 + 𝐵𝑒𝑛𝑟𝐴
]

. (A.13)

Therefore, the total stress can be written as:

𝜎 = 𝐶
[

𝐵𝑠𝑡𝑑𝑈 + 𝐵𝑒𝑛𝑟𝐴
]

− 𝛼𝑝𝐼. (A.14)

Substituting this equation for total stress into Eq. (A.12) yields:

𝑉 𝑇
[

∫𝛺

(

𝐵𝑠𝑡𝑑
)𝑇 𝐶𝐵𝑠𝑡𝑑𝑑𝛺

]

𝑈 + 𝑉 𝑇
[

∫𝛺

(

𝐵𝑠𝑡𝑑
)𝑇 𝐶𝐵𝑒𝑛𝑟𝑑𝛺

]

𝐴

= 𝑉 𝑇

[

∫𝛺

(

𝐵𝑠𝑡𝑑
)𝑇 𝛼𝑝𝐼 𝑑𝛺 + ∫𝛤𝑡

[[
(

𝑁𝑠𝑡𝑑)𝑇 ]]𝑝 ⋅ 𝑛𝛤𝑑 𝑑𝛤

+∫𝛤𝑡

(

𝑁𝑠𝑡𝑑)𝑇 𝑡⃗𝑑𝛤 + ∫𝛺

(

𝑁𝑠𝑡𝑑)𝑇 𝑏𝑑𝛺

]

,

(A.15)

and

𝑊 𝑇
[

∫𝛺
(𝐵𝑒𝑛𝑟)𝑇 𝐶𝐵𝑠𝑡𝑑𝑑𝛺

]

𝑈 +𝑊 𝑇
[

∫𝛺
(𝐵𝑒𝑛𝑟)𝑇 𝐶𝐵𝑒𝑛𝑟𝑑𝛺

]

𝐴

= 𝑊 𝑇

[

∫Ω
(𝐵𝑒𝑛𝑟)𝑇 𝛼𝑝𝐼 𝑑Ω + ∫𝛤𝑡

[[(𝑁𝑒𝑛𝑟)𝑇 ]]𝑝 ⋅ 𝑛𝛤𝑑 𝑑𝛤

+∫𝛤𝑡
(𝑁𝑒𝑛𝑟)𝑇 𝑡⃗𝑑𝛤 + ∫𝛺

(𝑁𝑒𝑛𝑟)𝑇 𝑏𝑑𝛺

]

.

(A.16)

This discrete system of equations can be written in the form, 𝐾𝑈−𝐹 = 0
using the following definitions:

𝐾𝑢𝑢 = ∫Ω

(

𝐵𝑠𝑡𝑑
)𝑇 𝐶𝐵𝑠𝑡𝑑𝑑𝛺, (A.17)

𝐾𝑢𝑎 = ∫𝛺

(

𝐵𝑠𝑡𝑑
)𝑇 𝐶𝐵𝑒𝑛𝑟𝑑𝛺, (A.18)

𝐹𝑢 = ∫Ω

(

𝐵𝑠𝑡𝑑
)𝑇 𝛼𝑝𝐼 𝑑Ω + ∫𝛤𝑡

[[
(

𝑁𝑠𝑡𝑑)𝑇 ]]𝑝 ⋅ 𝑛𝛤𝑑 𝑑𝛤

+ ∫𝛤𝑡

(

𝑁𝑠𝑡𝑑)𝑇 𝑡⃗𝑑𝛤 + ∫𝛺

(

𝑁𝑠𝑡𝑑)𝑇 𝑏𝑑𝛺, (A.19)

𝐾𝑎𝑢 = ∫𝛺
(𝐵𝑒𝑛𝑟)𝑇 𝐶𝐵𝑠𝑡𝑑𝑑𝛺, (A.20)

𝐾𝑎𝑎 = ∫𝛺
𝐵𝑒𝑛𝑟

𝑇
𝐶𝐵𝑒𝑛𝑟𝑑𝛺, (A.21)

𝐹𝑎 = ∫Ω
(𝐵𝑒𝑛𝑟)𝑇 𝛼𝑝𝐼 𝑑Ω + ∫𝛤𝑡

[[(𝑁𝑒𝑛𝑟)𝑇 ]]𝑝 ⋅ 𝑛𝛤𝑑 𝑑𝛤

+ ∫𝛤𝑡
(𝑁𝑒𝑛𝑟)𝑇 𝑡⃗𝑑𝛤 + ∫𝛺

(𝑁𝑒𝑛𝑟)𝑇 𝑏𝑑𝛺. (A.22)
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Fig. A.1. A two-dimensional domain 𝛺 with an open discontinuity interface 𝛤𝑑 .
Source: Modified from Khoei (2014).

Fig. A.2. This sketch illustrates the classification of elements (and nodes) based on
whether they are partially or completely cut through by a crack surface.

With 𝑈⃗ as the displacement vector 𝑈⃗ = [𝑈 𝐴]𝑇 , the discrete system of
Eqs. (A.15) and (A.16) can be written in matrix form as follows:
[

𝐾𝑢𝑢 𝐾𝑢𝑎
𝐾𝑎𝑢 𝐾𝑎𝑎

]{

𝑈
𝐴

}

=
{

𝐹𝑢
𝐹𝑎

}

(A.23)

For finite elements that are fully cut by a crack surface, we enrich the
standard FEM approximation by adding Heaviside step functions of the
form:

𝐻 (𝑥) =
(

+1 𝑖𝑓 , 𝑥 > 0
−1 𝑖𝑓 , 𝑥 < 0

)

(A.24)

If an element (such as element 23 or 27 in Fig. A.2) contains a crack
tip, it will be partially cut by the crack surface, and needs to be enriched
by asymptotic crack-tip functions of the form:

𝐹 (𝑟, 𝜃) = {
√

𝑟𝑠𝑖𝑛
( 𝜃
2

)

,
√

𝑟𝑐𝑜𝑠
( 𝜃
2

)

,
√

𝑟𝑠𝑖𝑛
( 𝜃
2

)

𝑠𝑖𝑛𝜃,
√

𝑟𝑐𝑜𝑠
( 𝜃
2

)

𝑠𝑖𝑛𝜃}

(A.25)

As shown in Fig. A.2, the elements in the domain can be classified as
enriched elements if they are cut through (partially or completely) by a
crack. Elements that share one or more nodes with an enriched element
are classified as blending elements, while those that do not share
any nodes with enriched elements are classified as standard elements.
Furthermore, nodes that bound enriched elements are referred to as
enriched nodes (and can either be crack-tip enriched or Heaviside
nodes) whereas those that bound standard elements are referred to as
standard nodes.
16
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