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A B S T R A C T   

In the past few decades, multi-stage hydraulic fracturing has emerged as a crucial technology for the commercial 
development of unconventional oil and gas (UOG) resources. It is crucial to accurately and efficiently charac
terize transient fluid flow near fractures, which is a critical concern for many researchers. Discrete fracture 
models (DFMs) are primarily used to analyze the pressure transient behaviors of fluid flow in naturally fractured 
porous media. DFMs can accurately capture transient fluid flow near fractures, but they require a substantial 
number of grids to ensure computational accuracy, leading to higher computational costs. On the other hand, 
standard embedded discrete fracture models (EDFMs) based on pseudo-steady-state assumptions are computa
tionally efficient, but they struggle to model the early transient fluid flow near fractures accurately. To address 
this limitation, we propose a new analytically modified EDFM (AEDFM) with structured Cartesian grids for 
analyzing the pressure transient behaviors of fluid flow in naturally fractured porous media. 

The transmissibility between the matrix and fractures is adjusted by multiplying it with a transient factor. In 
addition, we have validated the accuracy and efficiency of our proposed model through comparisons with results 
from analytical models and a standard well-testing software package. The results demonstrate the significance of 
our proposed model in accurately capturing transient fluid flow around fractures and reducing computational 
costs. In this work, we analyze the pressure transient behaviors of fluid flow using various parameter values and 
further evaluate the significance of the proposed modifications. The results indicate that AEDFM can effectively 
match the early nonlinear pressure drop near fractures compared to the standard EDFM. This work presents a 
powerful tool for the fast and accurate analysis of pressure transient behaviors of fluid flow in naturally fractured 
porous media.   

1. Introduction 

In the past few decades, the estimated ultimate recovery (EUR) of 
production wells has been significantly enhanced by applying hydraulic 
fracturing technology (Wu et al., 2017). Hydraulic fracturing has 
emerged as a crucial technology for commercially developing uncon
ventional oil and gas (UOG) resources. Scholars have developed various 
mathematical models, both continuum and discrete, to characterize 
fluid flow within and around fractures due to their significant contri
bution to fluid flow in fractured porous media (Chen and Yu, 2022; 
Karimi-Fard and Firoozabadi, 2001; Kazemi et al., 1976; Li and Lee, 
2008; Wan and Aziz, 1999; Warren and Root, 1963). Well-test models 
based on these approaches are essential for pressure transient analysis 
(PTA) and evaluation of fracture parameters (Chandra et al., 2013). 

These models require high computational accuracy and solve pressure 
responses at scales of several seconds or smaller. 

Continuum models represent the fractured porous media as a 
continuous medium with homogeneous properties. These models 
include the dual-permeability, dual-porosity, and multiple continuum 
models (Gilman and Kazemi, 1983; Pruess and Wu, 1993; Warren and 
Root, 1963). The dual-porosity model was first proposed by Barenblatt 
(Barenblatt et al., 1960). Warren and Root (1963) proposed the dual- 
porosity model known as the Warren and Root model, which is the 
most commonly used model in the pressure transient analysis of fluid 
flow in fractured porous media. The transfer term between the matrix 
and fractures in this model is derived based on a pseudo-steady-state 
assumption. Later, Dean and Lo (1988) proposed the dual- 
permeability model as an alternative to the dual-porosity model. The 
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dual-permeability model assumes that the matrix has both storage ca
pacity and flow capacity. However, it is important to note that this 
model is based on the pseudo-steady-state assumption, and the transfer 
term derived from this assumption is only applicable at late times. To 
address this limitation, Zimmerman et al. (1993) employed a nonlinear 
equation to derive the transient transfer term between the matrix and 
fractures. This approach enables a more precise simulation of the flux 
between the matrix and fractures across all time scales, including early 
and late stages. Azom and Javadpour (2012) later suggested that the 
transient transfer term between the matrix and fractures could be 
expressed as a product of the pseudo-steady-state transfer term and a 
transient factor. Besides, Pruess and Narasimhan (1985) developed a 
multiple interacting continua (MINC) model, which is an extension of 
the dual-porosity model. However, continuum medium models struggle 
to accurately represent the complex geometry of fractures, as they as
sume the matrix is uniformly divided by them (Egya et al., 2019; Kuchuk 
and Biryukov, 2014). 

In contrast to continuum models, discrete models represent each 
fracture in the porous media individually. This is achieved by consid
ering fractures as n-1 dimensional objects in an n-dimensional model 
(Kim and Deo, 2000). As a result, the fluid flow in the porous media can 
be modeled more accurately. Discrete models mainly include the 
discrete fracture model (DFM) and the embedded discrete fracture 
model (EDFM). In DFM, fractures are positioned at the interfaces be
tween neighboring matrix grids by using unstructured grids such as 
triangular/tetrahedral and perpendicular bisector (PEBI) grids (Karimi- 
Fard and Firoozabadi, 2003; Sandve et al., 2012). The fractures are 
meshed in this way to ensure a clear and logical structure of the model. 
Furthermore, the use of unstructured grids enables easy implementation 
of local grid refinement around fractures, allowing the DFM to accu
rately capture the transient fluid flow around them (Jiang and Younis, 
2015; Zhao et al., 2018). However, this approach inevitably comes with 
a very high computational cost. To address this limitation, Lee et al. 
(2001) developed the embedded discrete fracture model (EDFM), which 
constructs matrix and fracture grids independently. The flux between 
each fracture and its host matrix grid is calculated using a non- 
neighboring connection (NNC) flux term (Xu, 2015). The EDFM 
method has been widely applied in simulating fluid flow in fractured 
porous media (Moinfar et al., 2013; Wang and Fidelibus, 2021; Yu et al., 
2017; Yu et al., 2019; Cao et al., 2023; Hu et al., 2023; Zhao et al., 2023). 
However, like the pseudo-steady state transfer term in the dual- 
permeability model, this NNC flux term is derived based on the 
pseudo-steady state assumption and is linearly related to pressure. 
Olorode and Rashid (2022) later introduced the transient embedded 
discrete fracture model (tEDFM) to address the nonlinear pressure drop 
associated with early-time transient fluid flow between the matrix and 
fractures. This work provides new insights to address the limitations of 
EDFM in dealing with transient fluid flow. Additionally, Ţene et al. 
(2017) developed the projection-based embedded discrete fracture 
model (pEDFM) based on the EDFM, which can effectively handle flow 
barriers such as faults, a limitation of EDFM. Subsequently, Olorode 
et al. (2020) proposed a robust 3D pEDFM algorithm. Furthermore, 
Rashid and Olorode (2023) noted that pEDFM is unable to accurately 
simulate low-conductivity fractures that are neither aligned with the 
simulation grid nor intersect diagonals of the matrix cell. To address this 
limitation of the pEDFM model, they developed the continuous 
projected-based EDFM (CPEDFM). DFM and EDFM are both powerful 
tools for the numerical simulation of fluid flow in fractured porous 
media. 

DFM is widely used in numerical well-test models for pressure 
transient analysis of fluid flow. For example, Liu et al. (2020) proposed a 
numerical well-test model for the pressure transient analysis of fluid 
flow with discretely distributed natural fractures using the DFM method 
and PEBI grids. Chen et al. (2023) studied the pressure transient be
haviors of two multi-fractured horizontal wells (MFHWs) with well 
interference and two-phase flow using the DFM method and PEBI grids. 

Furthermore, EDFM has been used by some researchers for pressure 
transient analysis of fluid flow. Liu et al. (2022) proposed a hybrid 
discrete fracture method that uses DFM and locally refined unstructured 
grids to simulate hydraulic fractures, while natural fractures are 
modeled using EDFM. Later, Xu and Sepehrnoori (2022) combined 
EDFM with nested local grid refinement to accurately capture transient 
fluid flow around fractures. However, this approach requires sufficiently 
fine grids around fractures, leading to a relatively large number of grids. 
Xiang et al. (2023) investigated the pressure transient behaviors of 
fractured wells considering gas–water two-phase flow using EDFM and 
unstructured PEBI grids. However, there is still a lack of a numerical 
well-test model that is accurate and efficient for pressure transient 
analysis of fluid flow. 

In this work, we develop a new analytically-modified EDFM 
(AEDFM) with structured Cartesian grids to accurately and efficiently 
analyze the pressure transient behaviors of fluid flow in naturally frac
tured porous media. Firstly, the transmissibility between the fracture 
and its host matrix grids in the EDFM method was modified to model the 
transient fluid flow between the matrix and fractures. Then, the flow 
rate from the fracture into the wellbore was treated as a separate vari
able to eliminate the error associated with the equivalent radius based 
on pseudo-steady-state assumptions. This model’s accuracy was verified 
by comparing it with the analytical model and a specialized commercial 
software package for pressure transient analysis. Additionally, we dis
cussed the limitations of standard EDFM at early times. To demonstrate 
the accuracy advantages of AEDFM, we compared its results with those 
of EDFM and tEDFM. Finally, we investigated the impact of parameters 
related to natural fractures on the pressure transient behaviors of fluid 
flow. This paper presents a powerful tool for the pressure-transient 
analysis of fluid flow in naturally fractured porous media. 

2. Analytically modified embedded discrete model 

2.1. Physical model 

Fig. 1 shows a multi-stage fractured horizontal well (MFHW) located 
in the center of a naturally fractured porous media with closed bound
aries. To develop the mathematical model, several assumptions are 
made:  

• The porous media is assumed to be homogeneous, isotropic, and 
characterized by uniform initial pressure and temperature.  

• The system is assumed to be isothermal, so temperature is excluded 
from consideration. 

• The flow fluid is a single-phase, slightly compressible fluid that fol
lows Darcy’s law.  

• The fractures fully penetrated the porous media, and fluid flows into 
the wellbore only through hydraulic fractures. 

• There are no natural fractures are present within 30 m of the hy
draulic fractures. 

Fig. 1. Schematic diagram of the physical model of an MFHW in the naturally 
fractured porous media. 
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• The wellbore storage and skin effects are taken into consideration.  
• The production well produces at a constant rate. 

2.2. Mathematical model 

2.2.1. Matrix flow equation 
The mass conservation equation for fluid flow in the matrix can be 

written as: 

24
∂(ρϕm)

∂t
+∇⋅(ρ vm

̅→
) − ρ

(
qm − qm,f

)
/V = 0 (1)  

where 24 is a coefficient used for unit conversion; ρ is the density of the 
fluid, kg/m3; ϕm is the matrix porosity, fraction; t is the production time, 
h; vm
̅→ is the Darcy velocities of the fluid in the matrix, m/d; qm is the 

source/sink term in the matrix, m3/d; qm,f is the transfer function of the 
fluid flow from the matrix to the fracture, m3/d; V is the bulk volume, 
m3. 

The Darcy velocities in Eqs.1 can be defined as: 

vm
̅→

= − 86.4
km

μ (∇p − ρg∇z) (2)  

where 86.4 is a coefficient used for unit conversion; km is the matrix 
permeability, D; μ is the fluid viscosity, mPa⋅s; p is the pressure of the 
fluid, MPa; g is the gravitational acceleration; and z is the height, m. 

2.2.2. Fracture flow equation 
The EDFM method couples the fluid flow in the fracture cell with that 

in the matrix cell using non-neighboring connections (NNCs). This is 
achieved by incorporating a flux term into the semi-discrete form of the 
governing equation. The mass conservation equation for fluid flow in the 
fracture system can be written as: 

24
∂
(
ρϕf
)

∂t
+∇⋅

(
ρvf
→)

− ρ
(

qf − qf ,m − qf1 ,f2

)
/V = 0 (3)  

where ϕf is the fracture porosity, fraction; vf
→ is the Darcy velocities of 

the fluid in the fracture, m/d; qf is the source/sink term in the fracture, 
m3/d; qf ,m is the transfer function of the fluid flow from the fracture to 
the matrix, m3/d; qf1 ,f2 is the transfer function of the fluid from fracture 
cell 1 to fracture cell 2, m3/d. 

2.2.3. Wellbore equation 
Usually, the effective well index (WI) is employed to calculate the 

flow rate between a fracture cell and a well (Peaceman, 1983), and it can 
be expressed as follows: 

WI =
2πkf wf

ln(re/rw) + S
(4)  

q =
WI
μ

(
p − pwf

)
(5)  

where kf is the fracture permeability, D; wf is the fracture aperture, m; re 
is the equivalent radius, m; rw is the wellbore radius, m; S is the skin 
factor (dimensionless), and pwf is the bottom-hole pressure, MPa. 

The use of this approach in EDFM may result in errors in the early- 
stage pressure transient behaviors of fluid flow. This is because the 
derivation of the well index under steady-state conditions leads to 
excessive flow resistance in the early stage and renders it unsuitable for 
transient pressure computation. Considering the wellbore storage effect, 
we treat the flow rate into the wellbore from fractures as a variable. 
Based on the work of Al-Kobaisi et al. (2006), the wellbore equation can 
be expressed as follows: 

24
∂
(
ρϕf
)

∂t
+∇⋅

(
ρvf
→)

− ρ
(

qf − qf ,m − qf1 ,f2

)
/V +Q/V = 0 (6)  

Q = qc +24C
∂pwf

∂t
(7)  

where Q is the well production rate, m3/d; qc is the flow rate into the 
wellbore from fracture cell under the influence of wellbore storage ef
fect, m3/d; and C is the wellbore storage coefficient, m3/MPa. 

An initial value of qc is assumed to be equal to Q. The discretized 
equation is then iteratively solved using Eq. (7) to obtain the variable pwf 

and the variable qc under the influence of the wellbore storage effect. 

2.3. Numerical solution 

To solve the flow equations numerically, time is discretized using the 
backward Euler scheme. Then, we discretize the flux terms in space 
using the finite volume method with a two-point flux approximation, as 
discussed in Section 4.4 of the MRST book (Lie, 2019). The discretized 
forms of Eqs. (1), (3), (6), and (7) are obtained by using the divergence 
operator (div) and gradient operator (grad) mentioned in this book: 

24

[
(ρϕm)

n+1
− (ρϕm)

n
]

Δt
+div(ρ vm

̅→
)

n+1
− (ρqm)

n+1
/V + qnnc

m /V = Rn+1
m

(8)  

24

[(
ρϕf
)n+1

−
(
ρϕf
)n
]

Δt
+div

(
ρvf
→)n+1

−
(

ρqf

)n+1
/V + qnnc

f /V = Rn+1
f

(9)  

24

[(
ρϕf
)n+1

−
(
ρϕf
)n
]

Δt
+div

(
ρvf
→)n+1

−
(

ρqf

)n+1
/V + qnnc

f /V+

(

qn+1
c

+ C
pn+1

wf − pn
wf

Δt

)

/V

= Rn+1
w

(10)  

where 

vα
→

= − 86.4⋅Tij
kα

μ
[
grad

(
pn+1

α
)

− ρg⋅grad(z)
]
, Tij =

Ti,j⋅Tj,i

Ti,j + Tj,i
, Ti,j = Ai,jki

ci,j
̅→⋅ ni,j

̅→
⃒
⃒ ci,j
̅→⃒⃒

(11)  

and 

qnnc
α =

∑Nnnc

N=1
Tnncρ

[
(pα − ρgz) − (pα − ρgz)nnc

N

]

μ , Tnnc =
knncAnnc

dnnc (12) 

For matrix-fracture connections, the expressions for knnc, Annc, and 
dnnc can be written as follows: 

Annc = 2Af , knnc =
kmkf

km + kf
, dnnc =

∫

vxndv
V

(13)  

where the superscript n + 1 represents the current time step, while the 
superscript n represents the previous time step; R is the residual, 
kg - 1m - 3s - 1; the subscript α represents either m or f; Ti,j is the trans
missibility factor between cell i and j, m3;Ai,j is the face areas, m2; ci,j

̅→ is 
the vector from the centroid of cell i to the centroid of the interface of 
cell i and cell j; ni,j

̅→ is the outward unit vector that points from the 
centroid of the interface to the cell j; qnnc is the mass rate exchanged 
through NNC, kg/d; The subscript N is a number ranging from 1 to Nnnc; 
Nnnc is the total number of non-neighboring connections for each cell; Af 
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is the fracture area, m2; xn is the normal distance of the element from the 
fracture. Additional details on the expressions for the three types of non- 
neighboring connections in EDFM can be found in the work of Moinfar 
et al. (2013). 

Olorode and Rashid (2022) suggest that the qnnc term in Eqs. (8)–(10) 
is a linear function of the flow potential difference between matrix and 
fracture cells. This is the primary reason why the standard EDFM cannot 
match early transient fluid flow behaviors. Furthermore, drawing 
inspiration from the dual-porosity model to handle matrix/fracture 
flow, they proposed a method called tEDFM. This method corrects the 
matrix/fracture connection (NNC) flux in EDFM by multiplying it with a 
transient factor. 

qnnc
α,T = Tf

∑Nnnc

N=1
Tnncρ

[
(pα − ρgz) − (pα − ρgz)nnc

N

]

μ (14)  

Tf =
2Φi −

(
Φm + Φf

)

2(Φi − Φm)
(15)  

Φ = p − ρgz (16)  

where Φ is the flow potentials; the subscript i represents the initial state. 
Although their research effectively matched early transient fluid 

flow behaviors, it still does not accurately capture early pressure tran
sient behaviors, specifically with regard to the behaviors of the pressure 

derivative plot. Pruess and Wu (1993) proposed a more accurate method 
for handling fracture/matrix flow in dual-porosity models using an in
tegral method proposed by Vinsome and Westerveld (1980). The pres
sure distribution in the matrix cell can be approximated as follows: 

pm(xm, t) = pi +
(

pf − pi + rzm + sx2
m

)
e− xm/δ, δ = (kmt/4ϕmμCt)

1/2

(17)  

where xm is the distance from the point in the matrix cell to the outer 
boundary, m; r and s are coefficients that satisfy the integration condi
tions; Ct is the total compressibility, MPa− 1. 

Building on these foundations, Zimmerman et al. (1993) utilized the 
method proposed by Vermeulen (1953) to calculate step function pres
sure responses across all scales: 

pm − pi

pf − pi
=
[
1 − exp

(
− π2kmt/ϕmμCta2

m
) ]1

2 (18)  

where am is the half length of the matrix grid, m. 
The transient factor has been further corrected by substituting Eq. 

(18) into Eq. (17), resulting in: 

Tf =
1
2
+

1
2
[
1 − exp

(
− π2kmt/ϕmμCta2

m
) ]1

2 (19) 

Then, Eq. (19) and Eq. (14) (instead of Eq. (12)) are substituted into 
the discretized equations in Eqs. (8)–(10). Finally, we have implemented 
our modifications in the “shale” module (https://github.com/Uncon 
vRS/shale), which is one of the modules in the open-source numerical 
simulator MRST (Lie and Møyner, 2021), and solved for transient 
pressure using Newton-Raphson iteration. Next, we discuss the valida
tion and application of AEDFM, respectively. 

2.4. Model verification 

In this section, we validate the accuracy of the proposed model by 
comparing it with an analytical model and a standard well-testing 
software package called KAPPA (with an educational license) (Houzé 
et al., 2008). The numerical model of KAPPA adopts DFM and un
structured grids with local grid refinement. Table 1 shows the basic 
parameters that are used for model verification. 

2.4.1. Case I: Without natural fractures 
Fig. 2a shows the structured Cartesian grid (100 × 25 × 1) of the 

proposed model used for model verification. 
We plot the results in dimensionless form to facilitate the wider 

application of well-test curves (Chen and Yu, 2022). The dimensionless 
time can be expressed as follows: 

Table 1 
Parameters related to model verification.    

Case I Case II  

Types Parameters Value Unit 
Porous media Initial pressure 40 40 MPa 

Matrix porosity 0.1 0.1 / 
Total compressibility 5.58 × 10-4 5.58 × 10-4 MPa− 1 

Matrix permeability 1 × 10-3 1 × 10-3 D 
Formation size 500 × 500 

× 20 
500 × 500 
× 20 

m 

Hydraulic 
fracture 

Fracture conductivity 100 100 mD‧m 
Fracture half length 30 30 m 
Fracture height 20 20 m 
Fracture porosity 0.9 0.9 / 
Fracture width 1 × 10-2 1 × 10-2 m 

Natural 
fracture 

Fracture conductivity / 50 mD‧m 
Average length / 110 m 
Fracture height / 20 m 
Fracture porosity / 0.5 / 
Fracture width / 1 × 10-2 m 
Fracture number / 6 / 

Well Well production rate 10 10 m3/d 
Skin factor 2 × 10-2 2 × 10-2 / 
Wellbore storage 
coefficient 

1 × 10-3 1 × 10-3 m3/ 
MPa  

Fig. 2. Schematic of grids used for model verification.  
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tD =
3.6kmt

ϕmμCtX2
f

(20)  

where Xf is the fracture half length,m. 
The dimensionless wellbore storage coefficient can be written as: 

CD =
0.1592C
ϕmhCtX2

f
(21) 

Subsequently, the dimensionless pressure can be expressed as: 

pD =
kmh(pi − p)

1.842 × 10− 3qμB
(22) 

The result of KAPPA’s numerical model is used as a reference solu
tion pref . The L2 absolute error between the pressure pAEDFM of AEDFM 
and the reference solution pref is defined as follows (Zhan et al., 2023): 

RE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
pAEDFM,i − pref ,i

)2

∑n

i=1
p2

ref ,i

√
√
√
√
√
√
√

(23)  

where n is the number of time steps. 
The model comparison results are presented in Fig. 3. The double 

logarithmic curves in Fig. 3 show that the dimensionless pressure and 
pressure derivative of AEDFM also closely match those of the analytical 
model and KAPPA’s model. Furthermore, as seen in Table 2, the AEDFM 
model uses only 2509 grid blocks and takes only 3.6 s to compute the 
results over 70-time steps. The time step for KAPPA’s model is the same 
as that for the AEDFM. Compared to the results obtained from KAPPA, 
our model can significantly reduce computational costs while ensuring 
high accuracy. Additionally, the fluid flow stages of the MFHW can be 
divided into six stages: wellbore storage and skin effects, bilinear flow, 

Fig. 3. Comparison between AEDFM and the analytical model, as well as KAPPA’s numerical model of Case I.  

Table 2 
Comparison of computational time.  

Types The KAPPA’s 
model 

AEDFM 
(X25) 

AEDFM 
(X50) 

AEDFM 
(X100) 

CPU Core i7- 
11700 

Core i7- 
11700 

Core i7- 
11700 

Core i7- 
11700 

Grid number 3265 634 1259 2509 
Average computational 

time for five times 
6.1 s 2.5 s 2.7 s 3.6 s  

Fig. 4. Comparison of results for different grid numbers. X25, X50, and X100 
denote 25, 50, and 100 grids in the x-direction, respectively. 

Fig. 5. L2 absolute errors for different numbers of grids.  
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linear flow, elliptical flow, pseudo-radial flow, and boundary-dominated 
flow. The pressure derivative slopes for various flow stages, including 
wellbore storage, bilinear flow, linear flow, elliptical flow, pseudo-radial 
flow, and boundary-dominated flow, are 1, 1/4, 1/2, 1/3, 0, and 1, 
respectively. These flow stages have been extensively studied by 
scholars, and further details can be found in their work (He et al., 2016; 

Liu et al., 2020). 
To demonstrate the computational advantage of AEDFM, we con

ducted simulations for cases with 50 grids in the x-direction and 25 grids 
in the x-direction, respectively. Fig. 4 shows the effect of the number of 
grids in the x-direction on the pressure and pressure derivative curves. 
The L2 absolute error compared to KAPPA’s dimensionless pressure for 

Fig. 6. Schematic diagram of the physical model for model verification.  

Fig. 7. Pressure distribution in AEDFM and KAPPA simulations.  

Fig. 8. Comparison between AEDFM and KAPPA’s numerical model of Case II.  
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different grid numbers for 25, 50, and 100 grids in the x-direction is 
given in Fig. 5. The computational error is less than 0.0255, particularly 
when there are 100 grids in the x-direction, the computational error is 
0.0142. Based on Fig. 4 and Fig. 5, it is evident that the number of grids 
in the x-direction has less impact on the computational results. 

Table 2 shows that when AEDFM with only 25 grids in the x-direction 
has a total of 634 grids in the model, resulting in a computational time 
that is only 40 % of KAPPA’s model. Increasing the number of grids in 
the x-direction for AEDFM from 25 to 50 only resulted in a 0.2-second 
increase in computational time. Furthermore, to ensure computational 
accuracy and reduce costs, local grid refinement can be implemented 
near the fractures, while larger grids can be used in areas distant from 
the fractures. In the Results and Discussion section, we will further 
demonstrate the advantages of AEDFM by considering different cases. 

2.4.2. Case II: With natural fractures 
A numerical model with natural fractures is constructed for model 

verification. The limitations of version 5.20 of KAPPA has that make it 
challenging to perform local grid refinement around hydraulic fractures 
when simulating naturally distributed fractures, which can result in 
errors in the early stages. Therefore, to validate the reliability of AEDFM 
in a simplified manner, a case involving natural fractures orthogonal to 
hydraulic fractures is set up, as illustrated in Fig. 6. The input parame
ters are shown in Table 1. Fig. 7 shows the pressure distribution in both 
AEDFM and KAPPA, which indicates consistency between their results. 

The fact that colormaps in AEDFM and KAPPA are not entirely identical, 
coupled with their different grid sizes, could explain the visible differ
ences. When simulating natural fractures, KAPPA cannot construct the 
refined grid shown in Fig. 2b. To ensure accurate results, the KAPPA 
model uses a fine grid with close to 80,000 grids, while AEDFM only uses 
2142 grids. The pressure and pressure derivative curves in Fig. 8 indi
cate that the results from AEDFM closely match those from KAPPA, with 
consistent fluid flow regimes despite some differences in values during 
the middle stage. Thus, the results confirm the reliability of the proposed 
AEDFM. The flow stages of the MFHW with natural fractures are similar 
to those of the MFHW without natural fractures. However, the MFHW 
with natural fractures exhibits a deeper “dip” in the pressure derivative 
curve compared to the MFHW case without natural fractures. Therefore, 
the second flow regime is defined as the “fluid supply” stage. 

3. Results and discussions 

3.1. Limitation of standard EDFM 

To demonstrate the superiority of AEDFM, we compared its results 
with those of the standard EDFM and tEDFM using the parameters of 
Case I in Table 1. The comparison between the results of our model and 
those of the analytical model is shown in Fig. 3. Fig. 10 shows that the 
results of the standard EDFM and tEDFM match those of the analytical 
model in the late stage. However, their accuracy is lower in the early and 

Fig. 9. Locally refined Cartesian grids.  

Fig. 10. Comparison between AEDM, EDFM, and tEDFM.  
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middle stages. As mentioned, the coupling term for flow between the 
matrix and fractures in EDFM is derived based on the pseudo-steady- 
state flux assumption. Therefore, it cannot effectively handle the ex
pected early nonlinear pressure drop, resulting in a mismatch in the 
pressure and pressure derivative curves. By using the locally refined grid 
shown in Fig. 9, the standard EDFM results show a significant 
improvement, but errors still exist in the early stages. Additionally, 
using local grid refinement increases the computational cost and makes 
it difficult to deal with the case of non-parallel fractures. As depicted in 
Fig. 10, it can be observed that the tEDFM proposed by Olorode and 
Rashid (2022) outperforms the standard EDFM, although it is not 
entirely precise. The reason is that they both used the well index (shown 
in Eq. (4)) to calculate the fluid flow rates into the wellbore. This 
wellbore index is derived based on the steady-state assumption, which 
may introduce inaccuracies at early times. These inaccuracies are visible 
in the pressure derivative plots shown in Fig. 10. 

3.2. Sensitivity analysis. 

This section investigates the effects of critical parameters, such as 
skin coefficient and fracture length, on the pressure transient behaviors 
of fluid flow. Additionally, the advantages of AEDFM are further 
demonstrated by comparing different cases. The fundamental model 
parameters for the sensitivity analysis section are presented in Table 1. 

3.2.1. Effects of skin coefficient 
Fig. 11a illustrates the pressure transient behaviors of fluid flow at 

various skin coefficients using the tEDFM and an analytical model. The 
results indicate that the pressure transient behaviors of fluid flow 
modeled using tEDFM exhibit little change when the skin coefficient 
changes over two orders of magnitude (from 0.02 to 2). The reason for 
this is that tEDFM still uses the well index, as shown in Eq. (4), to 
calculate the flow from the reservoir to the well. This makes it difficult to 
match the early pressure transient behaviors. In contrast, the analytical 
model shows that the skin coefficient significantly affects the pressure 
and pressure derivative curves. The skin coefficient primarily affects the 
flow regime of “wellbore storage and skin effect”, and the height of the 
“hump” in the pressure derivative curve is related to CDe2S. This implies 
that the “hump” becomes higher as the skin coefficient increases. The 
skin effect causes an additional pressure drop, which is reflected in the 
pressure curve. However, the results of the AEDFM, as shown in 
Fig. 11b, match the analytical model very well. This demonstrates that 
the proposed AEDFM meets the accuracy requirements for well-testing 
interpretation. 

3.2.2. Effects of hydraulic fracture (HF) half-length 
Fig. 12a shows the pressure transient behaviors of fluid flow in 

KAPPA’s numerical model and AEDFM at different HF half-lengths. The 
results show that the HF half-length mainly affects the shape of the 
pressure and pressure derivative curves in the middle stage. Longer 
fractures correspond to lower values of the pressure and pressure 

Fig. 11. Effects of skin coefficient on pressure transient behaviors of fluid flow.  

Fig. 12. Comparison of AEDFM and KAPPA’s numerical model at different HF half-lengths.  
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derivative curves. The duration of the bilinear flow stage increases with 
the length of the hydraulic fracture. From the pressure distribution in 
Fig. 13, it is more visually apparent that longer fractures result in higher 
pressure within and around fractures. The results of AEDFM and 
KAPPA’s numerical model are almost identical, with only slight differ
ences in the middle stage, further confirming the accuracy of AEDFM. 
Fig. 12b compares grid counts between AEDFM and KAPPA’s numerical 
model for cases with different HF lengths. The numerical model grids 
generated by KAPPA are well-designed, with fewer grids for longer 
fractures. However, AEDFM utilizes even fewer grids and is more 
computationally efficient. 

3.2.3. Effects of number of hydraulic fractures 
The pressure and pressure derivative curves of fluid flow in KAPPA’s 

numerical model and AEDFM at different numbers of HFs are plotted in 

Fig. 14a. The results show that AEDFM’s outcomes match well with 
those of KAPPA’s numerical model. Additionally, the number of HFs has 
a significant impact on pressure and pressure derivative curves in the 
early and middle stages. Furthermore, an increased number of HFs re
sults in a more pronounced “dip” in the pressure derivative curve and a 
longer duration of bilinear flow. The pressure distribution map in Fig. 15 
shows that a greater number of HFs leads to higher pressure within the 
fractures. Fig. 14b compares the grid counts of AEDFM and KAPPA’s 
numerical model, revealing a significant increase in the grid count of 
KAPPA’s numerical model with an increase in the number of HFs due to 
the use of unstructured grids. However, despite the increasing number of 
HFs, the grid count of AEDFM only slightly increases. In the case of an 
MFHW with nine HFs, the number of grids in AEDFM is only 16 % of the 
number of grids in KAPPA’s numerical model. As the number of HFs 
increases, AEDFM proves to be more advantageous in terms of the 

Fig. 13. Pressure distribution map attD/CD = 200.  

Fig. 14. Comparison of AEDFM and KAPPA’s numerical model at different numbers of HFs.  

Fig. 15. Pressure distribution map attD/CD = 200.  
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number of grids and computational cost. 

3.2.4. Effects of natural fracture (NF) half-length. 
Fig. 16 shows the grid of AEDFM with discretely distributed natural 

fractures. The position of natural fractures has a significant impact on 
the pressure-transient behaviors of fluid flow. To minimize this impact, 
no natural fractures are added within 30 m of the hydraulic fractures. 
We investigated the impact of varying average lengths of NFs (namely, 
40, 50, and 60 m) on transient pressure behaviors, as shown in Fig. 17. 

The pressure distribution at different average lengths of NFs is illus
trated in Fig. 18. The results indicate that longer average lengths of NFs 
lead to lower pressure derivative values at late times. Additionally, 
longer average lengths of NFs result in higher bottom-hole pressure and 
the pressure around the wellbore. 

3.2.5. Effects of the number of natural fractures 
Fig. 19 illustrates the effect of the number of NFs (namely, 10, 20, 

and 50) on the pressure transient behaviors of fluid flow. As with the 

Fig. 16. The grid of AEDFM with discretely distributed natural fractures.  

Fig. 17. Effects of average length of NFs on transient pressure behaviors.  

Fig. 18. Pressure distribution map attD/CD = 3 × 105 under different average lengths of NFs.  

Fig. 19. Effects of number of NFs on transient pressure behaviors.  
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average lengths of NFs on the pressure transient behaviors, the values of 
the pressure derivatives decrease in the late stage and the bottom-hole 
pressure increases as the number of NFs increases. The pressure distri
bution maps in Fig. 20 show that the pressure propagation range widens 
as the number of NFs increases. Additionally, the pressure surrounding 
hydraulic fractures also increases. 

It is concluded that in this work, hydraulic fractures mainly affect the 
pressure transient behaviors of fluid flow during the early and middle 
stages, while natural fractures mainly affect the pressure transient be
haviors during late times. Additionally, the distance between NFs and 
HFs has a significant impact on the transient pressure behaviors of fluid 
flow. The impact of the number and length of NFs on the pressure 
transient behaviors of fluid flow is unclear when the number and length 
of NFs are changed, as this unavoidably affects the relative positions 
with HFs. Therefore, in this work, we have refrained from adding NFs 
within 30 m of the HFs. 

4. Conclusions 

In this work, we propose a new analytically modified Embedded 
Discrete Fracture Model (AEDFM) for pressure transient analysis of fluid 
flow in naturally fractured porous media. The model uses structured 
Cartesian grids, which significantly reduces computational costs. The 
main conclusions are as follows: 

AEDFM is established by correcting the transmissibility between the 
matrix and fractures of the standard EDFM through the multiplica
tion of a transient factor. The results show that the AEDFM’s results 
are in good agreement with those of the analytical and high- 
resolution numerical models. 
AEDFM can accurately capture the early transient flow around hy
draulic and natural fractures, including early nonlinear pressure 
drop, which standard EDFM struggles to capture. 
AEDFM with structured grids can significantly reduce computational 
time compared to numerical models that use DFM and unstructured 
grids with local grid refinement. In the case of only three fractures, 
the computational time of AEDFM is only 40 % of that of DFM. In 
cases with more fractures, AEDFM has even greater advantages. 
The duration of bilinear flow increases as the length of hydraulic 
fractures increases. Furthermore, an increase in the number of hy
draulic fractures leads to a more pronounced concavity in the pres
sure derivative curve. Moreover, as the natural fractures become 
longer and more numerous, the pressure derivative values observed 
in the late stages decrease. 

This study assumes that the fractures are vertical and fully penetrate 

the formation. However, fractures in the subsurface could be inclined. 
Although this is our initial work on using AEDFM for pressure transient 
analysis, further work will be done to consider the effects of complex 
fracture geometries and multiphase flow on pressure transient behaviors 
of fluid flow. 
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Houzé, O., Viturat, D., Fjaere, O.S., 2008. Dynamic data analysis. Kappa Engineering, 
Paris, p. 694. 

Hu, P., Geng, S., Liu, X., et al., 2023. A three-dimensional numerical pressure transient 
analysis model for fractured horizontal wells in shale gas reservoirs. J. Hydrol. 620, 
129545 https://doi.org/10.1016/j.jhydrol.2023.129545. 

Jiang, J., Younis, R.M., 2015. Numerical study of complex fracture geometries for 
unconventional gas reservoirs using a discrete fracture-matrix model. J. Nat. Gas Sci. 
Eng. 26, 1174–1186. https://doi.org/10.1016/j.jngse.2015.08.013. 

Karimi-Fard, M., Firoozabadi, A., 2001. Numerical simulation of water injection in 2D 
fractured media using discrete-fracture model. SPE Annual Technical Conference 
and Exhibition. https://doi.org/10.2118/71615-ms. 

Karimi-Fard, M., Firoozabadi, A., 2003. Numerical simulation of water injection in 
fractured media using the discrete-fracture model and the galerkin method. SPE 
Reserv. Eval. Eng. 6 (02), 117–126. https://doi.org/10.2118/83633-pa. 

Kazemi, H., Merrill Jr., L.S., Porterfield, K.L., Zeman, P.R., 1976. Numerical simulation of 
water-oil flow in naturally fractured reservoirs. SPE J. 16 (06), 317–326. https://doi. 
org/10.2118/5719-pa. 

Kim, J.-G., Deo, M.D., 2000. Finite element, discrete-fracture model for multiphase flow 
in porous media. AIChE J 46 (6), 1120–1130. https://doi.org/10.1002/ 
aic.690460604. 

Kuchuk, F., Biryukov, D., 2014. Pressure-transient behavior of continuously and 
discretely fractured reservoirs. SPE Reserv. Eval. Eng. 17 (01), 82–97. https://doi. 
org/10.2118/158096-pa. 

Lee, S.H., Lough, M.F., Jensen, C.L., 2001. Hierarchical modeling of flow in naturally 
fractured formations with multiple length scales. Water Resour. Res. 37 (3), 
443–455. https://doi.org/10.1029/2000WR900340. 

Li, L., Lee, S.H., 2008. Efficient field-scale simulation of black oil in a naturally fractured 
reservoir through discrete fracture networks and homogenized media. SPE Reserv. 
Eval. Eng. 11 (04), 750–758. https://doi.org/10.2118/103901-pa. 

Lie, K.-A., 2019. An introduction to reservoir simulation using MATLAB/GNU octave: 
user guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge 
University Press. https://doi.org/10.1017/9781108591416. 

Lie, K.-A., Møyner, O., 2021. Advanced modelling with the MATLAB reservoir simulation 
toolbox. Cambridge University Press. https://doi.org/10.1017/9781009019781. 

Liu, H., Zhao, X., Tang, X., et al., 2020. A discrete fracture–matrix model for pressure 
transient analysis in multistage fractured horizontal wells with discretely distributed 
natural fractures. J. Pet. Sci. Eng. 192, 107275 https://doi.org/10.1016/j. 
petrol.2020.107275. 

Liu, H., Liao, X., Zhao, X., et al., 2022. A high-resolution numerical well-test model for 
pressure transient analysis of multistage fractured horizontal wells in naturally 
fractured reservoirs. J. Pet. Sci. Eng. 208, 109417 https://doi.org/10.1016/j. 
petrol.2021.109417. 

Moinfar, A., Varavei, A., Sepehrnoori, K., Johns, R.T., 2013. Development of an efficient 
embedded discrete fracture model for 3D compositional reservoir simulation in 
fractured reservoirs. SPE J. 19 (02), 289–303. https://doi.org/10.2118/154246-pa. 

Olorode, O., Rashid, H., 2022. Analytical modification of EDFM for transient flow in tight 
rocks. Sci. Rep. 12 (1), 22018. https://doi.org/10.1038/s41598-022-26536-w. 

Olorode, O., Wang, B., Rashid, H.U., 2020. Three-dimensional projection-based 
embedded discrete-fracture model for compositional simulation of fractured 
reservoirs. SPE J. 25 (04), 2143–2161. https://doi.org/10.2118/201243-PA. 

Peaceman, D., 1983. Interpretation of well-block pressures in numerical reservoir 
simulation with nonsquare grid blocks and anisotropic permeability. SPE J. 23 (03), 
531–543. https://doi.org/10.2118/10528-PA. 

Pruess, K., Narasimhan, T.N., 1985. A practical method for modeling fluid and heat flow 
in fractured porous media. SPE J. 25 (01), 14–26. https://doi.org/10.2118/10509- 
pa. 

Pruess, K., Wu, Y.-S., 1993. A new semi-analytical method for numerical simulation of 
fluid and heat flow in fractured reservoirs. SPE Adv. Technol. Ser. 1 (02), 63–72. 
https://doi.org/10.2118/18426-pa. 

Rashid, H.U., Olorode, O., 2023. A continuous projection-based EDFM model for flow in 
fractured reservoirs. SPE J. 29 (01), 476–492. https://doi.org/10.2118/217469-PA. 

Sandve, T.H., Berre, I., Nordbotten, J.M., 2012. An efficient multi-point flux 
approximation method for discrete fracture–matrix simulations. J. Comput. Phys. 
231 (9), 3784–3800. https://doi.org/10.1016/j.jcp.2012.01.023. 
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